
International Journal of Software and Informatics, ISSN 1673-7288 
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048 
IJSI, 2021, 11(1): 59-71, doi: 10.21655/ijsi.1673-7288.00240 
2021 by Institute of Software, Chinese Academy of Sciences. All rights reserved. 

 

  

 

Local Semantic Structure Captured and Instance 
Discriminated by Unsupervised Hashing                                                                                                                                                                                                                            
Changsheng Li (李长升) 1, Qixing Min (闵齐星) 2, Yurong Cheng (成雨蓉) 1,  
Ye Yuan (袁野) 1, Guoren Wang (王国仁) 1              
1 (School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China) 
2 (School of Computer Science and Engineering, University of Electronic Science and Technology of China, 
Chengdu 611731, China) 
Corresponding author: Changsheng Li, changshengli507@163.com   

Abstract  Recently, unsupervised Hashing has attracted much attention in the machine 
learning and information retrieval communities, due to its low storage and high search efficiency. 
Most of existing unsupervised Hashing methods rely on the local semantic structure of the data as 
the guiding information, requiring to preserve such semantic structure in the Hamming space. Thus, 
how to precisely represent the local structure of the data and Hashing code s becomes the key point 
to success. This study proposes a novel Hashing method based on self-supervised learning. 
Specifically, it is proposed to utilize the contrastive learning to acquire a compact and accurate 
feature representation for each sample, and then a semantic structure matrix can be constructed for 
representing the similarity between samples. Meanwhile, a new loss function is proposed to 
preserve the semantic information and improve the discriminative ability in the Hamming space, 
by the spirit of the instance discrimination method proposed recently. The proposed framework is 
end-to-end trainable. Extensive experiments on two large-scale image retrieval datasets show that 
the proposed method can significantly outperform current state-of-the-art methods. 
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With the rapid development of the Internet and the explosive growth of data (such as pictures, 
videos, documents), how to quickly retrieve the information users need has become one of the hot 
issues in the academic and industrial circles. As one of the most efficient methods for large-scale 
information retrieval, Hashing has developed by leaps and bounds in recent years. In principle, it 
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usually maps the data (such as images, videos, and texts) in a high-dimensional continuous space 
to a low-dimensional binary space (i.e., Hamming space), as shown in Figure 1. During the 
mapping, it is expected to maintain the information concerning the original space in the Hamming 
space. Representing the data features with binary codes, Hashing can greatly reduce the storage 
cost and computational complexity and thus retrieve large-scale data sets quickly. Therefore, it is 
deemed as a new technology to support efficient feature learning in large-scale data retrieval. 
Because of its great potential, Hashing has been widely applied to various tasks, including 
cross-media retrieval [1], recommendation systems [2], and copy detection [3].  

 
(a) Original image                     (b) Color histogram                      (c) Hash code 

Figure 1. Brief introduction of Hashing 

Most of the existing Hashing methods are independent of data. For example, the typical 
locality sensitive Hashing (LSH) [4] attempts to generate embedded representation by random 
mapping. One advantage of such a technology is that in extreme cases, with the increase in Hash 
code bits, random mapping can keep the distance between inputs. Considering that the generation 
of a Hash function by this method does not depend on the dataset itself, the obtained function may 
not be globally optimal. In recent years, data-dependent Hashing has gained increasing attention 
and developed rapidly [5]. By modeling based on target dataset learning, it produces more accurate 
and concise Hash codes. Since the data-dependent methods often yield satisfactory results, various 
Hashing methods have been proposed, which can be roughly classified into supervised methods 

[6–8], semi-supervised methods [9,10] and unsupervised methods [11–17] according to whether 
supervised information is involved. Supervised Hashing usually applies supervised information 
(such as label information) to Hashing, where the supervised information includes the label 
information of a single sample, paired samples and sequences. The representatives include 
supervised discrete Hashing (SDH) [18], fast supervised Hashing (FastH) [6], ranking-based 
supervised Hashing (RSH) [19] and convolutional neural network Hashing (CNNH) [20]. However, 
such methods have some problems. To be specific, they usually require the Hash function to 
possess strong discriminability, otherwise the performance of the model fails to be guaranteed. 
Moreover, due to complex data in the actual scenes, more codes are needed to ensure the accuracy 
of the model, which lifts the storage burden. Wang et al. [9] put forward a semi-supervised Hashing 
method, where the learning of data pairs guaranteed similar Hash codes for similar data pairs but 
dissimilar codes for dissimilar pairs. Besides, the information entropy of Hash codes on unlabeled 
data should be maximized. Mu et al. [10] manually marked some semantically similar and 
dissimilar data pairs and adopted quadratic programming to obtain an accurate Hash function. 
Unsupervised Hashing methods do not use any supervised information but only the feature 
information of data for learning and training, represented by iterative quantization (ITQ) [11], 
discrete graph Hashing (DGH) [13], and scalable graph Hashing (SGH) [21]. Unsupervised Hashing 
is simple and easy to be implemented because it is free from label information in the learning 
process. However, it is challenging because it does not involve supervised information. Therefore, 
this paper mainly investigates unsupervised Hashing. 

In the past few years, although substantial unsupervised Hashing methods have been put 
forward, they still have the following problems. 1) Because of no label information in the data, 
how to accurately construct the semantically similar structure between data is still a pending 
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question. 2) In the learning to Hash, most methods only try to maintain the semantic structure of 
data but ignore the discrimination of Hash codes. As we all know, the discrimination of data 
features is pivotal to downstream tasks [22], and thus how to improve the discrimination of Hash 
codes is worth exploring. 

Inspired by instance discrimination [23], this paper proposes a novel Hashing method based on 
self-supervised learning. To be specific, it utilizes the contrastive learning to acquire a compact 
and accurate feature representation for each sample, and then a semantic structure matrix can be 
constructed for representing the similarity between samples. Meanwhile, a new loss function is 
proposed to preserve the semantic information and improve the discriminative ability in the 
Hamming space. In addition, a regular term is added to reduce the loss caused by relaxation. The 
framework proposed in this paper is end-to-end trainable and optimized by a standard back 
propagation algorithm. The image classification model VGG-F [24] is modified and trained 
accordingly. The feasibility and accuracy of the proposed method are compared with those of the 
state-of-the-art methods by retrieval experiments with FLICKR25K and NUSWIDE datasets. 

Section 1 of this paper mainly introduces the existing algorithms of Hashing and their 
categories, the problems of unsupervised Hashing, and the main technical route of this paper. In 
Section 2, the performance improvement method of the model proposed in this paper is elaborated 
from several aspects such as problem definition, network architecture, and loss function. Section 3 
proves that this method can improve the retrieval accuracy of the model in the case of different 
Hash code lengths in two commonly used datasets. In Section 4, we summarize this paper and 
offer the prospects. 

1 Related Work 

Designing an efficient feature learning algorithm for large-scale datasets is of great 
significance for retrieval. During the construction of an efficient large-scale retrieval system, two 
main problems are always encountered: storage cost and retrieval speed. At present, because of the 
high-dimensional features of multimedia data such as texts, images and videos, retrieval methods 
are faced with severe challenges of “curse of feature dimensionality”, which dramatically increases 
the storage space and computational complexity, thereby affecting the performance of the retrieval 
system. For these reasons, learning to Hash has been put forward and become a research hotspot in 
the fields of information retrieval and machine learning. It [5] analyzes the characteristics and 
structure of data and map high-dimensional continuous data into Hash codes (i.e., binary strings) 
by machine learning. At the same time, the structure information in the original space is kept as 
much as possible in the Hamming space. Because of its binary representation, learning to Hash can 
significantly reduce the storage cost and computational complexity, thus effectively improving the 
retrieval efficiency. As the focus of this paper, unsupervised Hashing is reviewed. 

Traditional unsupervised Hashing usually operates based on shallow structures. These 
methods usually regard feature learning and Hashing as two separate processes. ITQ [11], as a 
representative, attempts to reduce the dimension of the original dataset by PCA and map the data 
points in the dataset to the vertices of a binary hypercube, so as to minimize the corresponding 
quantization error. As a result, an accurate Hash code corresponding to the dataset is obtained. In 
recent years, as deep learning has achieved superior results in various visual tasks and machine 
learning, it has gradually been applied to Hashing, e.g., semantic Hashing [25], deep auto-encoder 
Hashing [26] and deep binary descriptors (DeepBit) [27]. Semantic Hashing employs a pre-trained 
restricted Boltzmann mechanism to build an auto-encoder network, so as to produce effective 
Hash codes and accurately reconstruct the original input. In deep auto-encoder Hashing, a very 
deep auto-encoder is designed to map the original input into the Hamming space, and the 
reconstruction loss guides the learning to Hash. DeepBit integrates feature learning and learning to 
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Hash into a framework, achieving good results. 

2 Methods 

In this paper, a deep unsupervised Hashing method based on local semantic structure and 
instance discrimination is proposed. In the learning to Hash, improving the discriminability of 
Hash codes can enhance the expression and retrieval of the model. This method mainly includes 
two parts. First, contrastive learning refines the local semantically similar structure, so that it can 
represent not only the semantic information of data but also the discrimination information. 
Secondly, a new target loss function is proposed. Contrastive learning enables the Hash codes to 
keep the semantic information and improves the discriminability of Hash codes. In the following 
part, we will elaborate the problem definition, network architecture, semantic structure matrix, and 
learning to Hash. 

2.1 Problem definition 
First of all, the representations of some main notations are listed in Table 1. 

Table 1 Notations 
Notation Meaning 

A 
ai 

Matrix 
The ith column of the matrix 

aij Element in the ith row and the jth column of the matrix 
||A||F Frobenius norm of the matrix 
AT Transpose of A 

exp(⋅) Exponent operation 
a⋅b Inner product of two vectors 
|A| 
L 
N 
d 

Absolute value of each element  
Length of a Hash code 

Number of samples 
Original feature dimension of a sample 

Given a group of training data X = [x1, x2, …, xn] ∈ ℝd×n, the goal of this paper is to learn a 
group of binary Hash codes: 

B = [b1, b2, …, bn] ∈ {-1, 1}L×n. 

For this purpose, this paper intends to solve a group of effective Hash functions as follows: 

 bi = [h1(xi), …, hL(xi)] = [sgn(F(xi; W1)), …, sgn(F(xi; WL))]         (1) 

where W1, …, WL represent the parameters for model learning. sgn(⋅) is a sign function defined as 

                               (2) 

Inspired by the outstanding performance of deep learning [27,28], this paper still takes deep 
neural network as the basic framework to learn the Hash function in order to well map the original 
data to Hamming space. Although many previous methods try to keep the structural information of 
data in the Hamming space, they ignore the discriminability of Hash codes. Therefore, besides 
keeping the semantically similar structure of data in the Hamming space, this paper attempts to 
improve the discriminability of Hash codes. 

2.2 Model learning 
For the above goal, this paper proposes an architecture based on instance discrimination, as 

shown in Figure 2. 
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Figure 2. Architecture of the proposed method 

The whole architecture is mainly divided into two parts: (1) construction of a semantic 
similarity matrix; (2) learning to Hash. Specifically, to construct a matrix S, this paper firstly trains 
the target dataset by contrastive learning, so that the learned features are discriminative. After the 
model update, with the features in the middle layer of the network as the new feature 
representations of the data, the matrix S is constructed. Concerning the learning to Hash, we first 
optimize the network by the structural loss function and try to maintain the local semantic 
structure of data in the Hamming space. Then, the original data and augmented data form a 
training sample pair, and contrastive loss is used to enhance the discrimination of features. 

During the construction of the matrix S, the VGG-F [24] model is taken as the convolution 
backbone for feature extraction. As this paper studies the unsupervised Hashing, the label 
information of data is unavailable. By virtue of the self-supervised learning mechanism, this paper 
builds auxiliary tasks to learn the network. The following loss function is used in this paper: 

                            (3) 

where τ is a hyperparameter.  and are two augmented samples of xi, such as data 
augmentation of the original image through random rotation and adding noise. Equation (3) aims 
to form a positive sample pair with two augmented samples of same data and negative sample 
pairs with these augmented samples and those of other data to train a classifier. Consequently, the 
augmented samples of the same sample are classified into the same class. Through the 
above-mentioned auxiliary tasks, the features learned by the network are of certain discriminability. 
To avoid over-fitting, this paper does not use the original data directly but their augmented samples 
to update the network. 

After the network update ceases, this paper employs the features of Layer fc-7 as the new 
feature representations and constructs the following similarity matrix: 

                        (4) 

where Θk(xi) represents K nearest neighbors of point xi, and Ωk(xi) means K points farthest from xi 
among all points. In Equation (4), if two points are neighbors, their semantic information is 
considered similar. Hence, the distance between these two points in the Hamming space is small. If 
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two points are far apart, then their semantic information is dissimilar and thus these two points are 
distant in the Hamming space. Algorithm 1 gives the concrete steps of constructing a structure 
matrix. 

Algorithm 1. Construction of a semantic similarity matrix. 

Input: Training data X and mini-batch of size m; 
Output: Semantic similarity matrix S. 

1: Initialization: Initialize the parameters of VGG-F by the model pre-trained in the image net dataset; 
2: Repeat until convergence; 
3: Randomly select m samples from X to build a mini-batch; 
4: Augment each sample in the mini-batch; 
5: Calculate the loss function (3) by forward propagation; 
6: Update the network parameters by a backpropagation algorithm; 
7: Relying on the updated VGG-F, extract the features of Layer fc-7 as the new features of the dataset; 
8: Construct a matrix S through Equation (4). 

This paper proposes the following objective function to maintain the semantic structure of 
data in the Hamming space and improve the discriminability of Hashing features: 

             (5) 

where bi and respectively represent the Hash codes of xi and its enhanced sample ; bi = 
sgn(F(xi; Φ)); Φ refers to learnable parameters for network. Matrix M is defined as follows: 

                         (6) 

In Equation (5), the purpose of the first item is to make the data sample and its augmented 
sample as close as possible in the Hamming space, so that the Hash codes are discriminative. The 
second item focuses on achieving consistent semantic structure of data in the Hamming space and 
continuous feature space. Jointly optimizing these two items can maintain the semantic structure of 
data and improve the data discrimination. 

In Equation (5), the binary representation makes it very difficult to optimize the network. To 
update the network gradient effectively, this paper uses function tanh(⋅) instead of function sgn(⋅) 
to relax the objective function. Hence, the following objective function is proposed: 

             (7) 

In addition, this paper adds another regular term to make the Hash code as close to 1 or −1 as 
possible, minimizing the loss induced by the above relaxation. Thus, the following objective 
function is obtained: 

        (8) 
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where α ≥ 0 and β ≥ 0 are two hyper parameters. 
The standard back propagation algorithm is adopted for gradient update so as to solve 

Equation (8). The whole training process is shown in Algorithm 2. 

Algorithm 2. Training of Hash codes. 

Input: Training data X, mini-batch of size m, and hyperparameters α and β; 
Output: Parameters of neural network Φ = {W1, …, WL} and Hash codes for training data. 

1: Initialization: Initialize the parameters of VGG-F by the fine-tuned model in the training dataset; 
2: Repeat until convergence; 
3: Select m samples randomly from X to build a mini-batch; 
4: Augment each sample of the mini-batch; 
5: Calculate the loss function (8) by forward propagation; 
6: Update the network parameters by the back propagation algorithm; 
7: On the basis of the updated VGG-F, the last layer of the network is extracted as the Hash code of the 

data. 

After the network training is completed, the Hash code of any other point xt that is not in the 
training set can be directly calculated by the following formula: 

 bt = sgn(F(xt;Φ))                               (9) 

The mapping of Hash codes for arbitrary data points is shown in Algorithm 3. 

Algorithm 3. Test of Hash codes. 

Input: Query xt and parameters Φ of the neural network; 
Output: Hash code bt of xt. 

1: Calculate the network output by the forward propagation algorithm; 
2: Calculate the Hash code of xt by Equation (9). 
 

3 Experiment and Analysis 

This section verifies the effectiveness of the proposed method, including mean average 
precision (MAP), parameter sensitivity analysis and ablation study. In this paper, Pytorch is used 
to build a deep Hashing model, and the model parameters are optimized by stochastic gradient 
descent with momentum method, in which the batch size, momentum parameter and learning rate 
are set as 16, 0.9 and 0.001, respectively. For fair comparison with other Hashing models, this 
method directly cuts the original image to a size of 224 × 224 as the input of the model, without 
any data augmentation, and the feature vector is extracted from fc-7 of VGG-F. Then, the feature 
vector is input into the Hashing layer to obtain the Hash code of each original image, where the 
Hashing layer is the last fully connected layer of the model. 

In two benchmark datasets NUSWIDE and FLICKR25K, our method is compared with some 
effective deep learning methods and traditional shallow-layer methods. The common evaluation 
criterion MAP is employed to measure the performance of this method.  

MAP is the mean of average precision (AP) for each query: 

 

where N is the number of samples related to the query label, P(r) is the retrieval precision of the 
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first r samples, and δ(r) is the relevance of the rth sample to the query. R is set as 5 000 in this 
paper and we determine that if at least one label of two samples is the same, then the two samples 
are related. 

3.1 Datasets and experiment environment 
This experiment runs on a server equipped with an operating system of Linux version 

4.4.0-1164GB-generic (buildd@lgw01-amd64-021) (gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6 
Ubuntu1~16.04.9)), a processor of Intel(R) Xeon(R) Silver 4210CPU@2.20GHz and a memory of 
64 GB. 

FLICKR25K contains 25 000 images collected from Flickr website, which are divided into 24 
categories. A total of 2 000 images are randomly selected as the test set, and the rest as the retrieval 
set, from which 10 000 images are randomly selected as the training set. 

NUSWIDE covers 269 648 images belonging to 81 categories. The data subset used in this 
paper contains 10 most common labels. A total of 5 000 images are randomly selected as the test 
set, and the rest images as the retrieval set, from which 5 000 images are randomly selected as the 
training set. 

3.2 Results in FLICKR25K 
Table 2 presents the MAP of our method and other methods in FLICKR25K when the length 

of Hash codes changes from 16 bits to 128 bits. Our method outperforms other methods. In the 
case of 16-bit, 32-bit, 64-bit and 128-bit Hash codes, the MAP of our method is 5.17%, 6.46%, 
6.70% and 7.45% higher than that of the second-best SSDH, respectively. Among other Hashing 
methods, ITQ [11], Spectral Hashing (SH) [29], Density Sensitive Hashing (DSH) [30], Spherical 
Hashing (SpH) [31], and SGH [21] are traditional shallow-layer methods, while DeepBit [27] and 
SSDH [14] are based on deep models. By comparison, we find that some non-deep Hashing 
methods have higher MAP than deep ones. This may be because the deep Hashing method cannot 
fully utilize the feature expression ability of the deep network in the case of lacking supervised 
information, and it is prone to over-fitting to the local minimum, thus showing poor performance. 
The self-supervised Hashing based on contrastive learning and with the regularization of Hash 
codes achieves the best MAP results. 

Table 2 MAP of different code lengths in FLICKR25K 

Algorithm FLICKR25K (bits) 
16s 32 64 128 

ITQ 0.649 2 0.651 8 0.654 6 0.657 7 
SH 0.609 1 0.610 5 0.603 3 0.601 4 

DSH 0.645 2 0.654 7 0.655 1 0.655 7 
SpH 0.611 9 0.631 5 0.638 1 0.645 1 
SGH 0.636 2 0.628 3 0.625 3 0.620 6 

DeepBit 0.593 4 0.593 3 0.619 9 0.634 9 
SSDH 0.724 0 0.727 6 0.737 7 0.734 3 
Ours 0.775 7 0.792 2 0.804 7 0.808 8 

3.3 Results in NUSWIDE 
Table 3 exhibits the MAP of our method and other methods in NUSWIDE when the length of 

Hash codes changes from 16 bits to 128 bits. 
 

Table 3 MAP of different code lengths in NUSWIDE 

Algorithm NUSWIDE 
16bits 32bits 64bits 128bits 

ITQ 0.527 0 0.524 1 0.533 4 0.539 8 
SH 0.435 0 0.412 9 0.406 2 0.410 0 
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DSH 0.512 3 0.511 8 0.511 0 0.526 7 
SpH 0.445 8 0.453 7 0.492 6 0.500 0 
SGH 0.499 4 0.486 9 0.485 1 0.494 5 

DeepBit 0.384 4 0.434 1 0.446 1 0.491 7 
SSDH 0.637 4 0.676 8 0.682 9 0.683 1 
Ours 0.707 0 0.739 7 0.761 3 0.786 8 

Table 3 reveals that the method proposed in this paper performs better than other methods. 
The MAP of our method is 6.96%, 6.29%, 7.84% and 10.37% higher than that of SSDH in the case 
of 16-bit, 32-bit, 64-bit and 128-bit Hash codes, respectively. Longer Hash codes can process more 
information and thus have a higher MAP. In addition, the difficulty of searching in NUSWIDE 
surges since its size is about 10 times that of FLICKR25K. Therefore, the MAP in NUSWIDE is 
smaller than that in FLICKR25K at the same length of Hash codes. 

3.4 Ablation studies 
In this section, ablation studies are conducted to verify the effectiveness of each part of the 

proposed algorithm. The method is divided into three components (Table 4), which are whether to 
add local semantic structure information, whether to add contrastive learning loss and whether to 
add regular term loss. Different components are combined to yield the ablation study results and 
reflect the influence of each component on the results. 

Table 4 Three main components in ablation studies 
Symbol Meaning 

C1 Add local semantic structure information 
C2 Add contrastive learning loss 
C3 Add regular term loss 

The results of ablation studies in FLICKR25K and with 16-bit and 32-bit Hash codes are 
respectively demonstrated in Tables 5 and 6. 

Table 5 MAP of our method’s variants in FLICKR25K at 16-bit codes 
Method C1 C2 C3 MAP 

Our method 
√   0.743 5 
√ √  0.765 9 
√ √ √ 0.775 7 

Table 6 MAP of our method’s variants in FLICKR25K at 32-bit codes 
Method C1 C2 C3 MAP 

Our method 
√   0.751 7 
√ √  0.789 0 
√ √ √ 0.792 2 

Tables 5 and 6 demonstrate that the precision of our method can be improved after regular 
term and contrastive learning loss term are added. Besides semantic structure information, 
contrastive learning loss is added to the model. By applying a momentum contrastive learning 
algorithm to Hash codes, the model can learn more accurate Hash codes. As such, the precision of 
the model is significantly improved. In addition to semantic structure information and contrastive 
learning loss, regular term loss is also added. The discrimination of Hash codes can be enhanced if 
the Hash codes approach 1 or −1 as much as possible. Therefore, keeping the semantic structure 
information of data and improving the discrimination of Hash code in the Hamming space 
facilitate the performance improvement, which verifies the effectiveness of the method proposed 
in this paper. 

3.5 Parameter sensitivity analysis 
In this section, the sensitivity analysis of the main hyperparameters α, β and τ in the proposed 
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method is carried out. The experiment is carried out with 16-bit Hash codes in FLICKR25K. 
Figure 3 (a) and 3 (b) respectively correspond to the cases with β fixed at 0.01 and α varying from 
0.001 to 0.1, and α fixed at 0.01 and β ranging from 0.001 to 0.1. 

    

 

 

 

 

 
(a) Variation of MAP with α                          (b) Variation of MAP with β 

Figure 3. Loss hyperparameters of 16-bit codes in FLICKR25K  

Figure 3 illustrates that in the case of a fixed β, MAP first increases and then decreases with 
the rise in α, and it reaches the maximum when α is 0.01. In the case of α fixed at 0.01, MAP 
climbs up and then declines with the increase in β, and it peaks when β is 0.1. Comparison of the 
influences of α and β on MAP indicates that α has a greater impact on the experimental results, 
while β can improve the experimental results to some extent. In other experiments, this paper fixed 
α = 0.01 and β = 0.01. 

With α = 0.01, β = 0.01 and τ varying within 0–0.5, the results are displayed in Figure 4. 

 
Figure 4. Temperature hyperparameter of 16-bit codes in FLICKR25K 

τ is a temperature parameter that controls the concentration of data distribution. Figure 4 
reveals that with fixed α and β, MAP grows before drops with the increase in τ, and it peaks when 
τ is 0.07. In this experiment, α = 0.01, β = 0.01 and τ = 0.07. 

3.6 Time complexity analysis 
Time complexity is the number of operations of the model, which can be measured by 

floating-point operation (FLOP). 
The time complexity of all convolutional layers is 

 

where l is the subscript of a convolutional layer. d is the number of the convolutional layers. nl is 
the number of convolution kernels in the lth network. nl−1 is the number of input channels in the lth 
network. sl is the size of a convolution kernel. ml is the size of the output feature map. The training 
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time of each image is about three times as long as the test time (one time in forward propagation 
and two times in back propagation). The total time complexity of VGG-F and Hash code layer in 
the training is calculated to be 31.0 GFlops, where the time consumption of the fully connected 
and pooling layers accounts for 0.8%. 

4 Conclusion and Prospects 

In view of the problems in unsupervised Hashing, this paper proposes a novel deep 
unsupervised Hashing method based on semantic structure preserving and instance discrimination. 
To improve the discriminability of Hash codes, we adopt self-supervised learning to capture the 
semantic structure and guide the learning to Hash. Experiments are carried out in two datasets 
commonly used to evaluate Hashing methods, and extensive experimental design and analyses 
verify the effectiveness of the proposed method. The future research will focus on the design of 
more effective self-supervised learning tasks and relevant loss functions as well as the 
optimization of the algorithm to increase the training speed. 
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