
International Journal of Software and Informatics, ISSN 1673-7288
http://www.ijsi.org, ijsi@iscas.ac.cn, +86-10-62661048
IJSI, 2021, 11(1): 5−29, doi: 10.21655/ijsi.1673-7288.00242
2021 by Institute of Software, Chinese Academy of Sciences. All rights reserved.

Node Embedding Research Over Temporal Graph
Anbiao Wu (吴安彪) 1, Ye Yuan (袁野) 2, Yuliang Ma (马玉亮) 3, Guoren Wang (王国仁) 2
1 (School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China)
2 (School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
3(School of Business Administration, Northeastern University, Shenyang 110169, China)
Corresponding author: Ye Yuan, yuanye@mail.neu.edu.cn

Abstract Compared with conventional graph data analysis methods, the graph embedding
algorithm provides a new graph data analysis strategy. It aims to encode graph nodes into vectors
to mine or analyze graph data more effectively using neural network related technologies. Some
classic tasks have been improved significantly by graph embedding methods, such as node
classification, link prediction, and traffic flow prediction. Although substantial breakthroughs have
been made by former researchers in graph embedding, the nodes embedding problem over
temporal graph has been seldom studied. In this study, we propose an adaptive temporal graph
embedding (ATGED), attempting to encode temporal graph nodes into vectors by combining
previous research and the information propagation characteristics. First, an adaptive cluster
method is proposed by solving the situation that nodes active frequency varies types of graph.
Then, a new node walk strategy is designed in order to store the time sequence between nodes, and
also the walking list will be stored in a bidirectional multi-tree in the walking process to get
complete walking lists fast. Last, based on the basic walking characteristics and graph topology, an
important node sampling strategy is proposed to train the satisfied neural network as soon as
possible. Sufficient experiments demonstrate that the proposed method surpasses existing
embedding methods in terms of node clustering, reachability prediction, and node classification in
temporal graphs.
Keywords temporal graph; node embedding; importance sampling; temporal reachability;

node classification

Citation Wu AB, Yuan Y, Ma YL, Wang GR. Node embedding research over temporal graph. International
Journal of Software and Informatics, 2021, 11(1): 5−29. http://www.ijsi. org/1673-7288/00242.htm

With the ultra-high speed computing power of computers, models for high-dimensional data
and multi-level neural networks have been designed. In the research on the graph data in deep

This is the English version of the Chinese article “时序图节点嵌入策略的研究.软件学报,2021,32(3):650-668. doi:
10.13328/j.cnki.jos.006173”.
Foundation items: National Natural Science Foundation of China (61932004, 62002054, 61732003, 61729201);
Fundamental Research Funds for the Central Universities of Ministry of Education of China (N181605012); China
Postdoctoral Science Foundation Funded Project (2020M670780)
Received 2020-07-19; Revised 2020-09-03; Accepted 2020-11-06; IJSI published online 2021-03-31

Research
Article

6 International Journal of Software and Informatics, 2021, 11(1)

learning, scholars did not find an effective network model for graph data at the early stage of
neural network research as they are non-Euclidean data. Therefore, it is challenging to encode
high-dimensional graph data to low-dimensional and structural vectors and to train parameters for
acquired node vectors by neural networks.

In 2009, Scarselli et al. [1] firstly proposed the concept of graph neural network model (GNN),
and they encoded nodes to vectors by incorporating attributes of neighboring nodes. They
provided a prototype of representation learning on graphs, and guided some researchers in the
research on feature-based representation learning on graphs. However, it did not attract much
attention at that time. Until 2014, the proposition of the DeepWalk [2] algorithm really triggered
the research boom on graph (node) embedding. Inspired by the word2vec [3] algorithm in natural
language processing, the DeepWalk algorithm designed a very simple yet effective approach for
encoding nodes to vectors. Specifically, the DeepWalk algorithm calculated the similarity between
nodes and node vectors by training the random walking list of each node (ID list of the node)
through the skip-gram [3] model. Later, researchers have proposed node embedding algorithms
such as large-scale information network embedding (LINE) [4], predictive text embedding (PTE) [5],
node2vec [6], and stru2vec [7] based on the DeepWalk algorithm. However, all of these algorithms
still follow the original framework of the DeepWalk algorithm. Essentially, compared with the
DeepWalk algorithm, these algorithms focus more on biased node walk in terms of the node walk
strategy. In other words, they define the walking probability of a node with its focus on the node
topology. In 2018, Dong et al. [8] provided the matrices of the four algorithms, DeepWalk, LINE,
PTE, and node2vec, which further illustrated the unified principle of these algorithms.

Such walk strategy-based representation learning on graphs can preserve the node topology
to some extent, especially the methods based on biased walk strategies such as node2vec, and has
achieved satisfactory results in experiments. However, the walk strategy-based algorithms have a
very obvious deficiency that they completely ignore the role of attributes between nodes in
experimental results. This makes them unable to achieve satisfactory results on the data sets of
some attributed graphs. In 2017, Hamilton et al. [9] designed a novel sampling strategy, called
GraphSAGE (SAmple and aggreGatE). First, the node v performs sampling for its neighboring
node vi (the i-th neighbor sampled by the node v). Then, the sampled node vi performs sampling
for the node vij in the next layer (the j-th neighbor sampled by the node vi). At last, this strategy
aggregates all the features of the sampled nodes from outside to inside, obtaining a new aggregated
eigenvector of the node v. Although the GraphSAGE algorithm considers eigenvectors of nodes, it
weakens the preserve for node topology. In the same year, Kipf [10] proposed a semi-supervised
Graph Convolutional Network (GCN). Different from GraphSAGE, Ref. [10] convolves the
features of all the neighboring nodes for a given node by weight sharing, which was fundamentally
a weighted summation. It can be seen from (1) 1/2 1/2 () ()()l l lH D AD H Wσ+ − −= that scholars conducted
Laplace transformation for the matrix Ã, which is obtained by adding the identity matrix IN and the
adjacency matrix A, the node eigenvector H, and the matrix

,i jjD A= ∑
, and then obtained the new

node vector by the trainable weight parameter W. In addition, it can be known that the scholars
conducted a multi-layer convolution. Meanwhile, the experimental results in Ref. [10] showed that
as the number of layers increased, more precise results could be obtained. However, the quality of
the experimental results would drop sharply once the number of layers exceeded a certain value.
This is because once too much information is aggregated by a single node, the vectors between
nodes cannot have certain variabilities, and this will result in model generalization. In Ref. [10],
the convolution on neighboring nodes was uniformly performed on the premise of weight sharing.

Wu AB, et al. Node embedding research over temporal graph 7

However, in practice, the influences of some specific neighboring nodes on the attribute of a given
node are bigger than those of other nodes, so these neighboring nodes should be assigned higher
weights. On this basis, Velickovic et al. [11] proposed the Graph ATtention networks (GAT) in
2018. Specifically, with the shared weight parameter W and the node eigenvector ih

, the weight
coefficient between two nodes vi and vj is calculated by two functions LeakyReLU and Softmax:

,

exp(([||]))
exp(([||]))

i

T
i j

i j T
i jk N

LeakyReLU a Wh Wh
LeakyReLU a Wh Wh

α
∈

=
∑

As the eigenvectors of neighboring nodes are different, their weight coefficients should be
variable. In addition, the shared weight parameter W changes during the learning process, so the
weight coefficient between nodes also changes in the training process.

Temporal graphs (also known as temporal networks [12,13] and time-varying graphs [14,15]) are
time-based dynamic graphs with time labels on node edges. Data analysis on temporal graphs has
important applications in bioinformatic networks, online social networks, and road traffic
networks. In bioinformatic networks, the connections of biological functions are not always
active[16]. For example, in protein-protein interaction networks [17] and gene-regulation networks
[18], the connections of biological structures are sequential. The functions of structures can be more
easily confirmed through the analysis of interactions of these structures in different periods. In
road traffic networks [19–21], scholars could make route recommendations or reachability queries for
users by combining the historical data of the networks. In social networks [22–24], scholars could
characterize the relationships between users more precisely by recording their specific interactions.

Existing research on node embedding focuses more on how to better preserve structural
attributes of nodes in the vector representation of nodes. However, as connections between nodes
in temporal graphs are time-varying, which indicates the propagation sequence of specific
information between nodes, the node topology is dynamically changing over time. However, this
situation is not fully considered in graph embedding strategies.

In network graphs, temporality is not only limited to the temporality between two connected
nodes. For example, the connection between the vertex 1 and the vertex 2 in Figure 1(a) exists
only at the moments t1 and t2. When the static edge (1, 3) is not considered, there is a reachable
path 1 → 2 → 3 between the vertex 1 and the vertex 2 only from the perspective of topology.
However, once the temporal factor is considered, if the time stamp on the static edge (2, 3) is t3
and t3 > t2> t1, then there is no reachable path between the vertex 1 and the vertex 2. In addition to
connection temporality and path temporality, the attributes of nodes sometimes can be temporal as
well. With the vertex 1 in Figure 1(b) as an example, the attribute of a node may vary with time.
This phenomenon is prominent in e-commerce networks, and is a very difficult challenge to be
solved in recommendation systems.

According to the temporal property of temporal graphs compared with static graphs, the
challenges of graph neural network models on temporal graphs can be summarized as follows.

Node reachability: If two vertices vi and vj have only one reachable path in topology, but
there is no connection possibility in practice, it is not appropriate for the node vi to incorporate the
information of the vertex vj in sampling.

(1) Multi-edges: Two vertices have multiple time-dependent edges at different moments in
a time span. For example, there are two edges between the vertex a and the vertex b in Figure 1(c)
at the moment 3 and the moment 5, respectively. Then during node walk or information
integration, it is necessary to consider which edge is more appropriate.

8 International Journal of Software and Informatics, 2021, 11(1)

(2) Path selection: The selection of time-dependent paths will directly affect the walking
length of the starting point or the information amount of aggregated nodes. With the vertex b and
the vertex d in Figure 1(c) as examples, if the path between the vertex b and the vertex c at the
moment 6 is selected, the vertex b will not reach the vertex d; but if the path at the moment 2 is
selected, then the vertex d is reachable. Thus, the most accurate information can be incorporated
only if a most correct path is selected.

(3) Time spans of paths: During vertex walk or information integration along a path, if the
time span of this path is too long, the vertex near the end of the path and the vertex near the
starting point should not be assigned the same weight. From the path (〈a, b, c, e, f〉) from the vertex
a to the vertex f in Figure 1(c), it can be seen that the time span is only 7 between a and e, but
when the path reaches the vertex f, the time span increases sharply to 50. At this point, the
influence of the vertex f on the vertex a may be minimal. If the information of the vertex f is
incorporated by the vertex a, the incorporated information of the vertex a is redundant and may
even be wrong. Thus, the influences of the vertices with longer connection time on the starting
point should be weakened as time goes on.

1 2

3

(a) Weight graph G

 (b) Temporal graph Gt

1 32

1 32

1 32

t1

T

 (c) Temporal path sequence TO

a

b

c

d

e

f

〈4〉

t2

t2t3

t1

t2

t3

t1

t2 t2

t3

〈3,5〉

〈3〉

〈7〉
〈50〉

〈2,6〉

Figure 1. Example of temporal graphs

There are many research fruits in graph embedding. However, when analyzing these
experimental results, we find a remarkable and general problem that the graph representation
learning methods based on different strategies have variable experimental results on different types
of graphs. This is because some graphs are highly sensitive to their topologies, but insensitive to
their attributes. For this type of graphs, the node embedding methods based on walk strategies can
get better experimental results. The graphs which are sensitive to their attributes are more suitable
to convolution-based graph representation strategies. On this basis, it can be known that it is
almost impossible to represent all types of graphs by one kind of graph learning models within the
existing theoretical framework and at technical level. Therefore, in order to deal with the challenge
of representation learning on temporal graphs, we aim to design a graph embedding learning
method which is sensitive to temporality, so as to obtain a graph representation learning method
that is more suitable for the characteristics of temporal graphs.

The innovations of this paper are as follows.
(1) By integrating the existing graph embedding ideas and related characteristics of

temporal graphs, we design a novel embedding strategy for temporal graphs, which can satisfy the
analysis of temporal graphs.

Wu AB, et al. Node embedding research over temporal graph 9

(2) In order to solve the problem that the activity between nodes in different types of
temporal graphs varies much, this paper designs an adaptive node walk model that satisfied
temporal reachability and preserves the temporal property that the connections between a given
node and its neighboring nodes varies with time as much as possible.

(3) To obtain the walking list of nodes in different periods as fast as possible, we save the
nodes in the walking process in bidirectional and temporal multi-trees. In this way, the walking list
can be obtained simply and quickly after the walking was finished.

(4) In terms of the characteristics of the embedding method and the graph topology, we
reduce the training time of neutral network models for single nodes by only conducting sampling
for important nodes.

(5) Different experiments of temporal graphs are developed on different types of real
temporal graphs, so as to verify the generality, accuracy, and efficiency of the proposed method.

Section 1 gives the basic definitions related to temporal graphs and the definition of
embedding on temporal graphs. Section 2 introduces a basic and temporal walking method.
Section 3 proposes a more efficient walk strategy over temporal graphs. Section 4 performs
sampling for important nodes. Section 5 analyzes the experiments on temporal graphs. Section 6
describes related work.

1 Problem Definition

To organize the basic issues, this section will introduce the types of temporal graphs, which
are the research objects, and define the basic concepts. The meanings of the symbols used in this
paper are listed in Table 1.

Table 1 List of symbols
Symbol Meaning Symbol Meaning

u, v Nodes in the graph Arr(u,v) Time from node u to node v
GT Temporal graph network ul Walking list of node u
Infi Information type in the network WL Set of walking lists of all the nodes
Labi Label of node Winu Window of walking list of node u
Nu Set of neighboring nodes of node u zi Vector representation of node vi

T(u,v) Set of connection moments between node u and node v Rd Dimensional space of vectors

Generally, the edges of temporal graphs are discrete, as shown in Figure 2(a). The edge of
the node u pointing to the node v at the moment t is denoted as (u, v, t, λ), where λ denotes the
arrival time, namely that the node u departs at the moment t and arrives at the node v after time λ.
This paper does not involve the time-based path query between nodes [25], and focuses more on the
moment at which the node u reaches the node v. Thus, λ can be ignored. In practice, t can be
treated as t + λ. In this way, the temporal graph in this paper can be simplified to (u, v, t), where t =
t + λ. With the vertices a and b in Figure 2(a) as examples, if information is sent from a to b at
moment 0 and arrives after λ = 1 time unit, the weight of this edge is 1. However, in social
networks, λ is often set as 0 due to the immediacy of information. In another case, λ denotes the
duration of the connection, namely that the connection is established between two nodes at the
moment t and the connection lasts for λ time units. On the principle of arrival as fast as possible, λ
is ignored and the weight of the edge between the two nodes is assigned t. It should be noted that
in real datasets, the connection between two nodes in the data representation is often immediate, so
λ can be ignored. This type of discrete temporal graphs is the research object of this paper.

Besides, there is a special kind of temporal graphs, which is also called as time-dependent
graphs [26,27]. In this type of temporal graphs, the weights of edges are determined by the

10 International Journal of Software and Informatics, 2021, 11(1)

time-dependent function f(t), which are not discrete, as shown in Figure 2(b). This paper does not
focus on this type of temporal graphs due to their limited applications.

(a) Temporal graph (b) Time-dependent edge weight

b

a

d

e

f

c

〈3,7〉

Time
t1 T

W

O

Weight

w=f(t)

t2

〈2,6〉

〈5,8〉

〈1〉
〈5〉 〈7〉

〈7〉〈4〉 〈9〉

Figure 2. Examples of different types of temporal graphs

Definition 1 (Temporal graphs). The given temporal network GT(V, E, TE, X) denotes a
directed temporal graph with temporal relationships between nodes; V the set of nodes, V = {v1, …,
vn}; E the set of edges, and |V| = n, |E| = m. TE represents the set of moments when there is
connection between nodes in the graph, and T(u,v) is the set of moments when there is a connection
between the node u and the node v. As shown in Figure 2(a), T(a,c) = {2, 6} and T(u,v) ∈ TE. X
denotes the set of node eigenvectors, and X = {x1, …, xn}, where xi indicates the eigenvector of the
node vi.

Definition 2 (Arrival time). For the given temporal graph GT(V, E, TE, X), the time for the
node u reaching the node v is denoted as Arr(u,v), and Arr(u,v) = T(u,v) + λ.

As λ = 0 in this paper, with Figure 2(a) as the example, Arr(a,b) = T(a,b) = {1}, Arr(a,c) = T(a,c) =
{2, 6}.

Definition 3 (Temporally reachable path). For the given temporal graph GT(V, E, TE, X), the
path 〈v1, v2, …, vk〉 satisfies temporal reachability when and only when

1 1 2(,) (,)min() max() | (0 2)
i i i iv v v vArr Arr i k

+ + +
≤ ≤ ≤ − . The

1 2 1(,) (,)max() min()
i i i iv v v vArr Arr
+ + +

< indicates all the
connections between the node vi+1 and the node vi+2 are before the point when the node vi is
connected to the node vi+1. In other words, after the node vi reaches the node vi+1, there are no
connections between the two nodes vi+1 and vi+2.

With Figure 2(a) as an example, there are three reachable paths between the vertex a and the
vertex f: 〈a, b, c, f〉, 〈a, c, f〉, and 〈a, d, f〉. With the path 〈a, d, f〉 as an example, if the arrival
moment from the vertex a to the vertex d changes from 4 to 9, the path 〈a, d, f〉 is not a temporally
reachable path. Because after the moment 9, the two nodes vi+1 and vi+2 are disconnected.

Definition 4 (Temporal graph representation learning). For the given temporal graph GT(V, E,
TE, X), the representation learning of temporal graph nodes can be formally indicated as follows.
When the sampling nodes are temporally reachable, the node vi is mapped to a vector with the
dimension of d by the learning function f, and d << |V|, namely

f:V → Z, Z = {z1, …, zn}, zi ∈ Rd

where the vector zi is the final vector representation of the node vi.

2 Limitations of Walk Strategy in Temporal Graphs

In light of the above definitions as well as characteristics and application scenarios of
temporal graphs, we analyze the limitations and challenges of the node representation problem
limited by the characteristics of temporal graphs. The first step is to analyze the difficulties of the
problem as much as possible, and then we can arrive at the corresponding solutions.

Wu AB, et al. Node embedding research over temporal graph 11

Limitation 1: Walking lists cannot preserve the temporal factor.

In the node representation learning based on walk strategies, the walking lists of a node
should be obtained at first. With the vertices a and o in Figure 3 as examples, when the temporal
relationship between the two vertices is not considered, the vertex a can reach the vertex o through
the two paths 〈a, f, n, o〉 and 〈a, e, l, f, n, o〉, and the two walking lists ‘a, f, n, o’ and ‘a, e, l, f, n, o’
can be obtained. The distance between the two vertices a and o indicates the distance between the
two in the topology. In the temporal relationship, as the path 〈a, e, l, f, n, o〉 does not satisfy the
temporal reachability, the vertex a can only reach the vertex o through the path 〈a, f, n, o〉.

In this way, the temporal property between nodes can be better preserved at the expense of
some topological properties. This is certainly more friendly to the time-sensitive experimental
results between nodes. In addition, the nodes which are only adjacent in the topology are not
necessarily “close” to each other. When they do not satisfy the temporal reachability, the two
vertices may not have many connections in practice. They just look “close” to each other
constrained by the topological relationship.

b

n oac f

d

l

hi

g

pk

j

q

e m

path 2path 3

path 4 path 5

3

〈9,15,25〉

path 1

67

30

35

23

5

1 3 5

20
6

30

〈1,2〉 〈2,4〉 〈5,7〉

〈2,4,8,10〉

Figure 3 Selection of random walking paths in a temporal graph

Limitation 2: There are dynamic changes in local topological structures.

Sometimes in a short time span, the dynamic changes in the relationship between nodes are
limited in a local scope of a graph. From the node vi that walks at different moments, we can
obtain many repeated paths. With the vertices a and d in Figure 3 as examples, the temporally
reachable paths of the vertex a walking on the path 4 are the same at moments 2 and 4. When the
time span is long, there is a different temporally reachable path at the moment 8. When there is a
sudden and large change in the connection moment between nodes, there may be some “upheavals”
in the related local topology. At this time, the vertex can walk after upheavals to obtain a new path,
and the sampling should be performed as small as possible before upheavals.

This phenomenon is common in practical networks. In a typical road traffic network, for
example, the travel time of each road section varies with moments (morning peak, evening peak,
and ordinary times), which leads to changes in local connectivity. People may need to select
various paths at different moments when they travel from the origin A to the destination B.

Limitation 3: The dynamic rates of change in different types of temporal networks vary greatly.

The frequency of connections between nodes varies drastically in different types of temporal
networks. Some may be measured in milliseconds (such as communication service networks),
while some may be measured in minutes, hours, or even days (such as mail networks). In this case,

12 International Journal of Software and Informatics, 2021, 11(1)

it is a great challenge to design an adaptive node sampling strategy so that the problem stated in
the Limitation 2 can be solved in different types of temporal networks.

Limitation 4: Time span should be considered in sampling paths.

As the time variation has a big influence on the topology and the relationship between nodes
in temporal graphs, the influence on a node cast by its neighboring nodes should also be limited to
a certain time range. In a practical brain network (other practical networks such as traffic networks
or mail networks have similar situations), a message sent from one neuron a1 to another neuron at
the moment t1 does not spread forever in the network. After passing through many neurons, the
message is sent to the neuron ai at the moment ti. Then after several moments, a message is sent
from the neuron ai. It may simply be sent from the neuron ai and is no longer related to the initial
neuron a1. Thus, the temporal path after this moment should be attributed to the neuron ai instead
of a1. This phenomenon is very common in temporal networks. Especially in social networks,
where information is often instantaneous, this phenomenon is more common.

Therefore, when the initial node vi is sampled on a path that satisfies temporal reachability,
the time span of the path increases as the number of nodes on the sampled path increases.
Although the node at the end of the path and the initial node vi satisfy the temporal reachability, it
is important to test whether the correlation between them is made indirectly by intermediate nodes
and whether the nature of the transfer has changed.

3 Basic Temporal Node Embedding Strategy

According to the embedding method of existing walk strategies and the temporality between
nodes, the simplest embedding strategy of temporal graphs is to record the arrival moment of the
latest node in the walking list during the node walk and then select the next node that can be
walked.

First, the temporal graph GT should be transformed to a more convenient static graph, as
shown in Figure 4. Figure 4(a) and Figure 4(b) show the original temporal graph GT and the
transformed static graph, respectively. In Figure 4(b), nodes with the same color indicate the same
node at different moments. For example, the vertex a has connections with the vertices b, c, and d
at the moments 1, 2, 4, and 6 in Figure 4(a). In Figure 4(b), there are four vertices with the same
color, including a1, a2, a4, and a6. The earlier vertices point to the later vertices in the
chronological order, as shown by the edges with the same color and vertices. The subscripts of the
vertices indicate the moment when the vertex u reaches its neighboring vertex v, or the moment
when the neighboring vertex v reaches the vertex u, namely the outgoing and incoming edges of a
vertex at different moments, as shown in the black edges with arrows.

(a) Original temporal graph (b) Transformed static graph

b

a

d

e

f

c

〈3,7〉

a6 f9f8f5

a1

a2

a4

b1

b3 b5 b7c2

c5 c6 c7 c9

e3 e7

d4

d5 d7 d8

〈2,6〉

〈5,8〉

〈7〉〈1〉 〈5〉

〈7〉〈4〉
〈9〉

Figure 4. Example of a temporal graph

Wu AB, et al. Node embedding research over temporal graph 13

Considering merely the temporal reachability between nodes, we first transform the temporal
graph into a static graph, as shown in Figure 4. Then, through existing random walk strategies of
nodes and the skip-gram model in natural language processing, we design a basic node embedding
algorithm (Basic algorithm) on temporal graphs.

The basic principle of the algorithm is as follows. First, in temporal graphs, nodes lose their
degree of “freedom” to walk due to the limitation of time. When the initial node v walks to the
node u, it needs to select the neighboring nodes {u1, u2, …, un} of the node u to be walked. At this
point, it should be determined whether the arrival moment Arr(v, u) of the node u is smaller than or
equal to the maximum connection moment max(T(u,ui)) with its neighboring node ui, and only the
node ui that satisfies the condition can be walked. Then, we can select one or more nodes from the
nodes satisfying the condition to walk and sample. The walking list can be obtained after all the
vertices are sampled. Then, we can obtain the vector representation of nodes with temporality by
the skip-gram model.

Algorithm 1. Basic temporal embedding

Input: the temporal graph GT(V, E, TE), the skip-gram model, and the walking step L;
Output: the representation vector Z of nodes in the temporal graph.

1. WL,ul=∅; //WL: the set of the walking lists of all the nodes; ul: the walking list of the node u
2. FOR node u in GT
3. ul=u //initialize the walking list of the node u
4. WHILE |ul|<L //control the walking length
5. u=ul[－1] // take the end node of the walking list and use it as the origin of the next walk
6. FOR node v in Nu //Nu: the set of the neighboring nodes of u
7. Rand choose node v in V∈Nu and Visit(u)≤max(T(u,v)) //temporally reachable nodes exist
8. Visit(v)=t for t in T(u,v) and t>Visit(u) //record the arrival time of the node v
9. ul=ul∪v //update the walking list ul of the node v
10. IF ∀v in U max(T(u,v))>Visit(u)
11. BREAK //fails to satisfy temporal reachability and the walk terminates
12. END FOR
13. END WHILE
14. WL=WL∪ul //update the walking list WL
15. END FOR
16. z=Skip-Gram(WL) //return the vector representation of all the nodes

In line 3, the node u is first used as the starting point of the walking list. The line 5 indicates
selecting the node at the end of the existing walking list as the starting point of the next walking.
Lines 7–11 indicate when the walking list stops at the node u, a node v satisfying the temporal
reachability is randomly selected from the set of its neighboring nodes Nu and is added to the
walking list ul of the node u. If there is no neighboring node that satisfies temporal reachability,
the walk terminates. The codes in lines 14–16 indicate the walking lists of all the nodes are
recorded at first (line 14), and the vector representation for each node is obtained by the skip-gram
model.

However, it should be noted that this basic embedding strategy on temporal graphs cannot
overcome the limitations mentioned in Section 2. In particular, it cannot automatically recognize
the dynamic rates of change of different types of temporal graphs, nor can it solve the time span

14 International Journal of Software and Informatics, 2021, 11(1)

problem of sampling paths. With regard to this, we improve this basic algorithm to better deal with
the above limitations.

4 Improvement on Basic Temporal Node Embedding Strategy

Since the dynamic rate of change varies greatly with different types of temporal graphs, the
time span of sampling paths is very different in various types of temporal graphs. As the Basic
algorithm proposed in the previous section cannot effectively solve these two problems, this
section proposes a new embedding strategy for adapting to the dynamic changes of temporal
graphs based on the Basic algorithm.

4.1 Adaptive temporal graph embedding
To solve the problems of the basic embedding strategy proposed in the previous section, we

propose an improved sampling strategy of adaptive temporal graph embedding (ATGEB). The
principle of the strategy is that the dynamic changes of networks are generated by messages
spreading in the networks, and messages are propagated by establishing connections between users.
Messages also change with time, namely that messages have a propagation lifetime in temporal
networks. The time spans of different messages Infi and Infj spreading in networks can be
completely coincident, partially coincident, and completely separated. From a global perspective,
it is difficult to distinguish these different messages by time. However, if the propagation of
messages is analyzed specially in a single node u, it is possible to preserve the characteristics of
these messages indirectly by the connection between nodes. Assuming the messages Infi and Infj
are both propagated in the time span [t1, t2], when the messages are propagated to the nodes ui and
uj, respectively, we can distinguish the two messages indirectly by observing the nodes that have
connections with the two nodes in [t1, t2] as the nodes that different messages act on may vary.

On this principle, we can preserve the temporal relationships between the node ui and its
neighboring nodes in the propagation of different types of messages as much as possible by letting
the node ui walk under different message Infi. However, it should be noted that researchers
generally cannot obtain the propagation paths of specific messages due to the protection of user
privacy. We can study the problem from the set of activity moments of nodes in view of the
propagation characteristics of messages.

The connection moment between the node u and its neighboring node Nu is (,)uu v N u vT T∈=

.
Tu also includes the active time span of the node u: TSu = max(Tu) − min(Tu), the activity times |Tu |,
and the activity frequency AFu = |Tu|/TSu. In the time span [min(Tu), max(Tu)], the distribution of
the moments t1, t2, …, t|Tu| in the set Tu is not uniform as the propagated messages are different.
Thus, we can distinguish the messages transferred by the node u by clustering the moment ti with
the unsupervised DBSCAN algorithm. The average active interval of nodes is set as the object
radius E = TSu/(|Tu| − 1), which can be calculated as follows.

First, we sort the moments in Tu, obtaining Tu’ = [t1, …, t|Tu|]. Thus, the total interval is
1 2 1[1,| | 1]

() ()
u u

T i ii T
t t t t+∈ −
′ ′ ′ ′= − = − +∑ 3 2 | | | | 1() ... () max() min()

u uT T u u ut t t t T T TS−′ ′ ′ ′− + + − = − = , and the number of
intervals is | Tu | − 1. So, E = TSu/(|Tu| − 1).

We can obtain many set classes 1 [1,] , [1,]
, , and (,)k i u i ji k i j k i j

C C C T C C
∈ ∈ ≠

= = ∅

 by clustering
Tu with the DBSCAN algorithm, where | |1[, ,]i

i i

C
i C CC t t= , which are indirectly viewed as activity

ranges of messages. For example, the time span of the set Ci is | |1[,]i
i i

C
C Ct t . Then, the node u walks

in the time periods that are clustered, obtaining the walking list in each time period. Thus, the
temporal relationships between the node u and its neighboring nodes under different messages can
be saved. The specific steps are described in Algorithms 2 and 3.

This unsupervised clustering method is a good solution to the problem that the activity
frequencies of nodes vary in different types of temporal graphs. Because after the object radius E

Wu AB, et al. Node embedding research over temporal graph 15

is set, the moments can be clustered automatically. If a node u sends messages regularly to its
neighboring nodes, namely that AFu remains constant, this indirectly shows the similarity of the
propagated messages or even indicates that one message is being transmitted all the time. By this
adaptive clustering method, the elements in Tu can be clustered to a same type. This can reduce the
possibility of repeated sampling at different time periods and avoid excessive redundancy of
collected data to a certain extent.

Algorithm 2. ATGEB

Input: the temporal graph GT(V, E, TE) and the skip-gram model;
Output: the representation vector Z of nodes in the temporal graph.

1. WL,ul=∅; //WL: the set of the walking lists of all the nodes; ul: the walking list of the node u
2. FOR node u in GT
3. Tu,ul=∅ //initialize the active moments (connected with its neighboring nodes) and the

walking list of the node u
4. FOR node v in Nu //Nu: the neighboring node of the node u
5. Tu=Tu∪(T(u,v))
6. (), /(| | 1)u u u uT Sort T E TS T′ = = − //sort the moments in Tu and set the object radius
7. 1,..., (,)k uC C DBSCAN T E′= //cluster the sorted Tu’ in the radius E
8. FOR C in Ci
9. ul=ul∪PathTree(u,C) //summarize the walking lists in different time periods to update the

walking list of u
10. END FOR
11. END FOR
12. WL=WL∪ul //update the walking list WL
13. END FOR
14. Z=Skip-Gram(WL) //return the vector representation of each node

The problem that how the node u walks to its neighboring nodes at different time period Ci (as
shown in line 9) is explained in Algorithm 3: The node u selects a node v from its neighboring
nodes Nu; the node v has connection with u in the time period Ci, and the connection moment T ∈

Tu approximates or equals to the initial time period min(Ci). Then, the selected node v walks to
track the propagation path of messages.

Algorithm 3. PathTree

Input: the temporal graph GT(V, E, TE), the node u, and the time period Ci
Output: the walking list ul of the node u in the time period Ci

1. u.prev,u.next=∅,u.name=u //prev and next save preceding nodes and successor nodes, respectively
2. Q.pull(u),TL=∅ //u 作为树的根节点,TL 保存树的叶子节点地址 u indicates the root node and TL

saves the addresses of leaf nodes
3. WHILE Q is not empty //build a walking tree
4. u←Q.push
5. FOR each node v in Nu
6. IF Nu=∅ //record the node as a leaf node if there is no neighboring node and the walk

terminates
7. TL.pull(u) //record it as a leaf node

16 International Journal of Software and Informatics, 2021, 11(1)

8. BREAK
9. ELIF T(u,v) exist in [min(Ci),max(Ci)] and u.Arru<max(Ci) //determine whether the node can

reach within the specified time period
10. v.Arrv=t for t in T(u,v) and t>=Arru //record the arrival time of walk to the new node
11. v.prev=u, v.name=v; //point out the preceding node to extract the walking list
12. u.next.pull(v) //save the successor node
13. Q.pull(v)
14. ELIF T(u,v) not exist in [min(Ci),max(Ci)]
15. TL.pull(u) //the path is unreachable in specified time, so the path ends and the node is set as

the leaf node
16. END FOR
17. END WHILE
18. FOR tree leaves tl in TF: //search for several walking paths by a leaf node
19. list=∅ // initialize the walking list
20. WHILE tl!=∅
21. list=list∪tl.name //obtain the name of the node
22. tl=tf.prev // search the node list for the root node by the leaf node
23. END WHILE
24. ul=ul∪tl //obtain a list set of the node u
25. END FOR
26. RETURN ul //return the walking list of the node u in the specified time period

Algorithm 3 is explained in detail with the example shown in Figure 5. First, it should be
noted that the tree in Figure 5 is a multi-branch one that is temporally reachable, namely that the
paths from the root node to leaf nodes are temporally reachable. In line 1, the name of the root
node, the set of the successor nodes, and the preceding nodes are initialized. Since it is a
multi-branch tree, the non-leaf nodes of the tree keep the set of addresses of their successor nodes,
while the preceding nodes save a single address. Lines 5–8 indicate that if the node has no
neighboring nodes, it is recorded as a leaf node and its address is recorded in the leaf node set TL.
Lines 9–13 reveal if there is a neighboring node v that satisfies the requirement, namely that the
path is reachable in the time period Ci, the arrival time and the addresses of the preceding and
successor nodes of the node v are updated, and the node name is recorded and put into the tree.
Lines 14 and 15 signal the node u has no reachable neighboring nodes. Then, the node u is used as
a leaf node and its address is recorded in TL.

b

a

d

e

f

c

〈3,7〉

f e f f

a

b c d

c

f
e f f

(a) Temporal graph Gt (b) Path tree for node a

〈5,8〉

〈2,6〉

〈1〉 〈7〉〈5〉

〈7〉〈4〉 〈9〉

Figure 5. Selection of walking paths of temporal graph

Then, lines 18–24 indicate extracting the walking list from the addresss of the leaf nodes
recorded in TL. As shown in Figure 5(b), the node f walks to the root node a, so a node list ul1 = ‘f,

Wu AB, et al. Node embedding research over temporal graph 17

c, b, a’ can be obtained. It should be noted that this list is opposite to the real list. Therefore, in the
implementation of the algorithm, it is necessary to put the proposed node at the top of the list each
time, so that the real list ul1 = ‘a, b, c, f’ can be obtained. In line 24, ul indicates the list set of the
node in this time period, e.g., ul = [[a, b, c, f], [a, c, e], [a, c, f], [a, d, f]] in Figure 5(b). Thus, a set
of walking lists of the node u related to the message Infi can be gotten in the time period Ci.

4.2 Simple analysis of embedding accuracy
From the perspective of the generation of representation vectors of nodes, the operation

principle of the skip-gram model in node embedding is introduced. As shown in Figure 6, the
one-hot vector of a node is weighted by the hidden layer and then classified by the output layer.
The differences between the softmax layer of the nodes in the moving window w and the other
nodes in their probabilities and the outputs are calculated and used as the losses, which are
transferred backwards to update the weight of each layer. Then, the updating is continuously
conducted by the moving window. At last, the vector representation Z of the node can be obtained
by the weight of the hidden layer H.

0
0
0

...

1
0

0

0

one-hot vector
representing nodes

…
…

…

∑

∑

∑

∑

∑

∑

∑

…

…

…

…

‘Arthur’

‘August’

‘Juputer’

‘Hanna’

Neurons in the
hidden layer

Softmax layer for output
and classification

‘Lydia’

User (node)

d neurons N neutrons
Figure 6. Diagram of node embedding

It is assumed that there are I messages transferred by users in a temporal network: Inf1,
Inf2, …, InfI, and there are L node labels (classes): Lab1, Lab2, …, LabL. The users with different
labels have different sensitive degrees to different messages. This indicates that labels determine
that users have different probabilities of receiving and propagating different messages, namely that
users contact different users through different messages. On the contrary, it can be deduced that
several kinds of messages Infi, Infj, …, Infk can indirectly determine the labels of users, f(Infi,
Infj, …, Infk) = Labi. Thus, the label of a user can be more accurately determined by the type of the
messages the user receives or propagates.

In a neural network with classified nodes, the higher similarity between the vectors of two
nodes means the greater possibility that the two nodes belong to one type of nodes, namely

 [sim(zi, zj) > sim(zi, zk)] ≈ [P(ui, uj ∈ Labl) > P(ui, uk ∈ Labl)].

In Figure 6, the user list is indicated by U; the softmax layer by the output layer O; the hidden
layer by H. In a trained skip-gram model, for the user nodes u and v with the same label, it is
assumed that the users corresponding to the first w classes are (1 ,uU 2 ,..., wuuU U) and
(1 2, ,..., wvv vU U U) after they are output by the softmax layer. The embedding vectors of the two are
zu and zv. It has been known that the value H = WH × [0, 0, 0, …, 1, 0]T of the neuron in the hidden
layer directly determines the vector of a node and the class U of the node after the output layer,
namely Hu → zu and Hv → zv. As it has been known that the nodes u and v have the same label, the

18 International Journal of Software and Informatics, 2021, 11(1)

embedding vectors of the two nodes are similar: zu ≈ zv, so Hu ≈ Hv. As the hidden layer also
determines the output layer, there is 1 2 1 2(, ,...,) (, ,...,)w wu vu u v vU U U U U U≈ .

The above mainly describes the forward propagation mechanism in the node embedding
network. The updating method of the hidden layer is further indicated based on this. It is assumed
that the node u is in a walking list ul and a window Winu = {u1, …, u, …, uw} with a size of w is
constituted with u as the central. In this window, the training error of networks

1/2Δ ((,))
v Win

E y P u v
∈

′= −∑ , where y′ = Onehotu × WH × WO. As the size of Winu is limited, it is
impossible to put all the nodes in it. Thus, for a node except the node u, with the probability of it is
in the window Winu drops, P(u, v) decreases. As the training goes on, the classification of the
one-hot vector Onehotu of u in the skip-gram network tends more towards the nodes that have a
high frequency in Winu, which can be known by the characteristics of the output layer softmax. It
can be known that the frequency of the node u in the window Winu influences its classification in
the skip-gram model. Further, it also affects the value Hu of the neutron in the hidden layer to
influence zu according to the analysis in the last paragraph

Thus, it can be known from the above analysis that for the nodes u and v with the same label,
to make their embedding vectors zu and zv similar, it is necessary to make the sets of high
frequency nodes in the moving window Winu and Winv that use the nodes u and v as the central
nodes in all the walking list ul coincide as much as possible, and the nodes with the same label
should have the similar coincidence degree. This is because if the nodes with different labels have
similar coincidence degree, they can generate the similar representation vector Z, which is
contradictory to the premise that they have different labels.

For the nodes u and v with the same label, it is assumed that the sets of their possible walking
nodes are u

ulS and v
ulS respectively, and the possible walking sets in Algorithm 2 are u

ulT and
v

ulT respectively. It can be known that ,u u v v
ul ul ul ulT S T S⊆ ⊆ . For the walking windows Winu =

{u1, …, u, …, uw} and Winv = {v1, …, v, …, vw}, if the label of the two nodes is related to Infi and
Infj and it is assumed that the set of active nodes influenced by the two messages is

, ,v
Inf Inf ul InfS S T u v S∈ ∩ ∈ , the nodes in SInf indirectly show that they are active under the impact

of Infi and Infj. Thus, compared with the random walk strategy, in the walking path ul including the
nodes u and v under the proposed walk strategy, the 1/2(w − 1) nodes before and after the node u(v)
(namely the nodes in the window Winu or Winv) are more likely to be included in SInf, namely that
the nodes in the window have a stronger probability to have a same label with the node u(v). This
indicates there is a high probability of common nodes in the windows with the two nodes as the
central nodes (compared with the random walk strategy). As analyzed above, if there are more
common high-frequency nodes, more similar vectors can be obtained.

5 Sampling of Important Graph Nodes

In graphs, there are usually a large number of nodes gathering in a community within a very
short distance due to their complex topological structures. It can be seen from the principle of the
node embedding algorithm that many nodes in a dense community will obtain several similar
walking lists, which are further encoded to similar vectors. If these similar vectors belong to a
same class Ci, and the classification of nodes should be completed in a period as short as possible
and can be tolerant of certain model errors, is it possible to train the parameters of the neutral
network by sampling several vectors with similar nodes in the same type? In this way, the
parameter weights of the neutral network can be trained in a period as short as possible.

Wu AB, et al. Node embedding research over temporal graph 19

The walking lists of the nodes ui, uj, and uk are uil, ujl, and ukl, respectively. If the distance
between ui and uj is d(ui, uj) > d(uj, uk), the node ui is closer to uj than to the node uk. Thus,
generally the common neighboring nodes of the two nodes also satisfy Nui ∩ Nuj > Nuj ∩ Nuk. Thus,
for the node v walking in the range of w (the size of which is same as that of the window of the
skip-gram model), after its walking list vl passes the node uj, the probability of the walking list
passing the node ui is stronger than that of the walking list passing the node uk, namely P(vl →
uj|vl → ui) > P(vl → uj|vl → uk). On the contrary, the probability of the walking list from the node
ui to the node uj is also higher than that of the walking list from the node ui to the node uk.
Therefore, for a walking list of a random node wl ∈ WL, the probability of its including both ui and
uj in a window range with a size of w is greater than that of its containing both uj and uk, namely
P(uj, ui ∈ wl)>P(uj, uk ∈ wl). From a global perspective, (,) (,)i j j kwl WL wl WL

P u u wl P u u wl
∈ ∈

∈ > ∈∑ ∑ ,
so the times of ui and uj together in the window w is higher than that of uj and uk. In the skip-gram
model, the vector of the node u is updated through the other nodes which are also in the window w
with u in the walking list wl. Hence, among the vectors zui, zuj, and zuk of the three nodes, the first
two should have greater similarity, namely (,) (,).

i j j ku u u usim z z sim z z>
In view of the above analysis, it can be known that we can select several dense subgraphs g1,

g2, …, gm in a graph as dense communities to select important nodes. The dense subgraph gi
should satisfy that for any two nodes vi, vj ∈ gi, the distance between the two nodes d(vi,vj) should be
as short as possible. The most obvious idea is to mine dense communities by the k-core algorithm.
Although the k-core algorithm can be used to obtain the dense subgraph gi by increasing the value
of k, the subgraphs obtained by this method cannot make d(vi,vj) as small as possible. In Figure 7,
for example, after the nodes e, f, and g are deleted, the remaining nodes constitute a complete
2-core subgraph. However, the distance d(c,d) between the nodes c and d is 6. On the small-world
principle, we can know that it is a long distance in graphs. Therefore, it is difficult to meet the
demands of mining communities only by satisfying the density requirement, and the distance
between nodes in a community should also be limited. The kr-Clique algorithm stated in
Reference [28] can satisfy the demands, where k indicates the degree of nodes, r the hop of nodes,
namely that any two nodes in a community can reach to each other in r hops.

bc a

g

f d

e

Figure 7. k-core communities of graph

The kr-Clique algorithm stated in Ref. [28] aims to find all the communities that satisfy
requirements, but it is unnecessary in this paper. The sampling of important nodes is to select more
representative node vectors than the node class Ci to constitute the training sample set, which does
not need to select all the nodes. On this principle, several nodes vc1, vc2, …, vcn with high degrees
are selected in the graph. Then, with these nodes as the central nodes, the node

1
| (())

cvu u N d u k∈ ∩ > with the degree of neighboring nodes higher than k is selected. The
neighboring nodes of the eligible node u are selected with the node u as the central node. These
steps are repeated for r times, and then a rough kr-Clique algorithm about the central node vc2 can
be obtained, which can satisfy requirements. After the kr-Clique communities of the central node

20 International Journal of Software and Informatics, 2021, 11(1)

vc1 are selected, the nodes are clustered according to classes, obtaining the node sets SC1, SC2, …,
SCc. Then we can randomly select node vectors from each cluster with a small percentage (10% for
example) to constitute the training set rather than use 60% of the nodes in the graph as the training
set. This is because many of the 60% nodes belong to a same class and the vectors have high
similarities. Then we can select important nodes of the next central node vc2.

This section selects central nodes and important nodes by an algorithm similar to the
node-degree-based heuristic algorithm in the maximum influence problem [29], as shown in
Algorithm 4.

Algorithm 4. Important nodes sampling (INS) algorithm

Input: the temporal graph GT(V, E, TE), the node classes C1, C2, …, Cc, and the number of central nodes N;
Output: the vector set ZIN of important nodes.

1. krC=∅,i=0,ZIN=∅ //krC: the set of selected community nodes
2. WHILE (i<N)
3. FOR node u in W=GT∩krC
4. Chose ui as central nodes if d(ui)>d(uj)|(uj∈W) //select the node with the maximum node

degree as the central node
5. 1 2, ,

iu i ikrC u BN u BN= = = ∅ //BN1 and BN2 save the boundary points of the
community

6. FOR j in range(r) //the maximum hops between nodes in the community
7. WHILE BN1!=∅
8. v=BN1.pop //select new nodes to the community through boundary points
9. 2. (), . () for in and ()

ii u i i v iBN pull v krC pull v v N d v k>
10. END WHILE
11. BN1=BN2,BN2=∅ //update the boundary points in BN1 through BN2
12. EBD FOR
13. END FOR
14. Chose important nodes S in

iukrC in a certain proportion //select the set S of important nodes
15. ,

i

IN IN
uZ Z S krC krC krC= ∪ = ∪

16. END WHILE
17. RETURN ZIN //return the vector set of important nodes

In line 1, krC indicates the set of the selected community nodes, and i controls the number of
the selected central nodes in the community. Lines 3 and 4 mean the new central node ui should
not be in the already selected communities, namely that the distance between ui and all existing
central nodes should be at least 2, and the degree of ui should be greater than any other node. In
this way, the central nodes can be selected in the widest possible range of the graph rather than in a
local area of the graph. For example, in Figure 7, a (3, 3)-Clique is selected with a as the central
node, and b is selected as the central node among the remaining nodes. Lines 5–12 mean forming
the krCui community with the node ui as the central node. First, we search for the suitable
neighboring nodes through BN1 to expand the community krCui, and record the boundary points to
BN2. After these steps are completed, the boundary points of BN2 are assigned to BN1 for new
expansions. Line 14 shows the selection of important nodes, which has been explained above.

The above-mentioned important nodes are selected based on dense communities. However,
there are many nodes or new connected structures that are outside of these communities in actual

Wu AB, et al. Node embedding research over temporal graph 21

graphs. To unify the representative nodes, it is necessary to randomly select nodes from these
dissociated nodes in a same proportion to add them to the training sample set ZIN.

6 Experiments and evaluation

To fully verify the performance of the proposed algorithm on different types of data based on
the design and verification of the algorithm test, we select four actual datasets which vary greatly
in node (edge) size, distribution of temporal edges, density, and other graph structures as the input
data, and verifies the algorithm from four perspectives of node clustering, link prediction, node
classification, and temporal reachability of nodes.

6.1 Data and parameter setting
(1) Data
The datasets D0 [30] and D1 [31] come from two Bitcoin trading platforms Bitcoin OTC and

Bitcoin Alpha, respectively. These two datasets contain financial transaction data of users, not
ordinary social networks, where users are connected to their neighbors only once, which can be
seen by the fact that the temporal edges are equal to the static edges. The datasets D2 [32] and D3 [32]
come from temporal network data of the stack exchange websites Math Overflow and Super User,
respectively. The node size, static edges, temporal edges, and activity frequency of the four
datasets are listed in Table 2. In addition, it can be seen from Table 2 that the datasets vary largely
in different indexes, so they satisfy the experimental requirements.

Table 2 Information of datasets

Dataset Number of
nodes

Temporal
edge

Average
temporal edge

Static
edge

Average
static edge

Time
span
(day)

Activity
frequency

D0 6k 36k 6.05 36k 6.05 1 903 18.91
D1 4k 24k 6.39 24k 6.39 1 901 12.62
D2 25k 507k 20.41 240k 9.67 2 350 215.74
D3 194k 1443k 7.44 925k 4.77 2 773 520.38

(2) Comparison algorithms
In addition to apply the proposed algorithm to the four datasets, we also adopt the following

three algorithms to the datasets for comparison. Since some algorithms do not support the
temporally reachable walk strategy, the temporal graphs are viewed as static graphs when these
algorithms are applied to the datasets, namely that time stamps on edges are ignored.

DeepWalk: First, the time stamps are deleted from the temporal graph GT, and it is
transformed to a static directed graph. Then, the nodes are encoded to vectors by the DeepWalk
algorithm based on the static graph;

Node2vec: It is different from the DeepWalk algorithm in the following aspects. When the
node t walks to the neighboring node v after it reaches the node u, the walking probability αpq(t, v)
of every neighboring node of the node u should be calculated, and then the node v walked at the
next step is selected by the Alias sampling method. The walking probability is calculated by
Equation (1):

1/ , if 0

(,) 1, if 1
1/ , if 2

α
=

= =
 =

tv

pq tv

tv

p d
t v d

q d
 (1)

where dtv indicates the path length between the two nodes. In this test, p is set as 0.25; q as 4. The

22 International Journal of Software and Informatics, 2021, 11(1)

Alias algorithm is used to perform walk and sampling;
CTDNE [33]: The principle of this algorithm is consistent with that of the Basic algorithm in

this paper and the DeepWalk algorithm. During node walk, researchers set a probability of nodes
related to time, namely biased sampling, to influence the selection of neighboring nodes by the
given node.

(3) Experimental environment
The experiment is conducted under the conditions including Windows 10 64-bit operating

system, CPU with i5-8400@2.80Hz, 24G RAM, 500 GB hardware capacity. The program
language is Python 3.7.

(4) Parameters
When we use the skip-gram model to generate vectors, the window length is set as 5; the

walking steps L of nodes are set as 10, 20, 30, 40, and 50, respectively; for the vector zu generated
by the node u, the dimension d = 100; the learning rate r = 0.01. The loss function in the
classification task is the cross-entropy loss function.

6.2 Node clustering
In the node clustering test, the clustering performance of each algorithm is evaluated by the

number of static edges crossing clusters (EC) and the number of temporal edges crossing clusters
(TC). Through the representation vectors of nodes, the nodes are clustered to N classes: C1, C2, …,
CN, where Cv indicates the class that the node v belongs to. Thus,

(,) | ()
T

u v
v u Sv GEC v u S N C C∈∈= ∈ ∩ ∀ ≠

, namely that when the node v and its neighboring node u
belong to different classes, the edge (v, u) crosses different clusters. ee ECTC T∈=

, where e
indicates the edge in EC; Te the set of moments of the edge e.

The nodes are clustered to four classes and five classes respectively to analyze the
experimental results more objectively. Then the performance of each algorithm with different
clustering methods is calculated, as shown in Figures 8 and 9, where i in TC(i) and EC(i) indicates
the walking length of nodes and varies from 10 to 50.

(a) D0 (b) D1

(c) D2 (d) D3

Figure 8. Node clustering in a temporal graph

Wu AB, et al. Node embedding research over temporal graph 23

Figure 9. Analysis of sampling of important nodes

For the subgraphs in Figure 8, the vertical axis indicates the number, and the horizontal axis
the walking length of nodes in TC and EC, which varies from 10 to 50. It can be seen from Figures
8(a) and 8(b) that the proposed method converges faster in the initial stage, but gradually tends to
be stable with the increase of the walking length. This is because once the sampling strategy is
limited by time, the walking path will end automatically when it reaches a certain length. It can be
seen that the proposed method is basically stable after 30 steps. Thus, the walking length should be
within 30 steps. From Figure 8(a) and Figure 8(b), the ATGEB algorithm performs better in the
early stage, but its performance is basically same with DeepWalk and node2vec as the walking
length increases. From Figure 8(c) and Figure 8(d), the latter two algorithms perform better in the
datasets D2 and D3. Through this experiment, we aim to uncover that for the traditional node
clustering problem, the strategy based on temporal node embedding is more sensitive to the
attributes of datasets, namely that it has some advantages for some specific types of datasets.
However, it is not as versatile as the traditional algorithms such as DeepWalk and node2vec which
can be applied to all types of data.

6.3 Link prediction and reachability test
In the test, sample vectors are selected for each node v respectively in the link prediction, and

1/2|Nv| neighboring nodes of the node v are selected as positive samples. z(u,v) = zu+zv, where “+”
indicates connection, and the corresponding class is 1, indicating there is an edge between the two
nodes. Then, we randomly select the nodes 1 2 1/ 2| |, ,...,

vNu u u with the same number in the graph,
and determine whether there is an edge between the node v and the node ui. If there is an edge, the
corresponding class of the vector z(v,ui) is 1; otherwise it is 0. In the test for detecting temporal
reachability, we set the class of vectors by calculating whether the two related nodes satisfy
temporal reachability. After samples are collected for all the nodes, a total of 20% of them
constitute the training set and the remaining 80% make up the test set. The test structure can be
seen in Table 3, and the values are all the highest ones among the results under different walking
lengths.

Dataset
Algorithm D0 D1 D2 D3

Basic 43.2 46.7 50.1 52.1 49.7 51.2 47.5 50.6
Deepwalk 46.5 49.4 52.4 54.5 54.9 56.3 53.8 55.9
Node2vec 47.3 49.6 52.5 54.3 55.6 57.1 52.9 55.7
CTDNE 45.8 47.6 51.0 53.1 51.4 54.2 50.1 52.6
ATGEB 46.3 49.7 51.3 53.5 53.2 55.1 51.7 54.8

24 International Journal of Software and Informatics, 2021, 11(1)

First, it should be noted that the performance of the node embedding of temporal graphs in
link prediction is limited by its walk strategy, and its performance is probably worse than that of
the normal walk strategy, especially in the case of few connection moments between nodes. As
shown in Table 3, the method based on temporal sampling has obvious worse performance in link
prediction in the datasets D0 and D1 because the connection between nodes is single, seen from
the data information in D0 and D1. Since the networks are meant for bitcoin trading, there is only
one connection between users in the global range, namely that the temporal edges are the same as
the static edges. This also leads to the fact that the walking length of any method based on the
temporal walk strategy is largely limited by time. However, as the number of connections between
users increases, the performance of the proposed algorithm is less poor than that of the DeepWalk
algorithm and the node2vec algorithm. The proposed algorithm only performs slightly worse than
the two algorithms in D2, and has better experimental results in D3.

Table 3 Accuracy of link prediction and temporal achievability (%)

Problem

 Dataset
 Algorithm

Link prediction Temporal reachability

D0 D1 D2 D3 D0 D1 D2 D3
Basic 64.2 61.0 60.9 56.6 65.3 63.2 62.9 58.8

Deepwalk 79.3 82.5 71.9 80.8 76.3 78.6 70.8 78.3
Node2vec 81.9 81.8 70.2 79.7 79.4 79.5 68.1 77.9
CTDNE 67.9 64.7 65.9 59.4 81.7 80.7 71.9 80.3
ATGEB 78.4 76.4 71.6 81.5 85.3 82.9 72.8 82.7

The performance ranking of the algorithms changes in the detection of temporal reachability
between nodes. In this problem, the accuracy of the traditional walk strategy plummets. This is
because the traditional walk strategy does not consider the temporal relationship between nodes at
all, namely that the representation vectors of nodes do not fully preserve the temporal feature of
nodes. By contrast, the method based on the walk strategy in temporal graphs satisfies temporal
reachability in the sampling process. It can be seen that the ATGEB algorithm performs much
better in the datasets D0 and D1, while its advantages in the datasets D2 and D3 are not so obvious.
This is because in the latter two datasets, nodes have higher activity frequency and more frequent
connections, so the paths have a higher probability to satisfy temporal reachability than that in the
first two datasets.

6.4 Node classification and sampling of important nodes
This section focuses on classification of nodes and sampling of important nodes. In the

sampling of important nodes, the training time and results with different training sets and different
selection methods of training sets are compared. There are three ways to select the training set: the
first one is to normally select 20% of the dataset S as the training set; the second one is to
randomly select 10% of the dataset S as the training set; and the last one is the sampling method of
important nodes stated in Section 4, which selects the data with the same amount of the second
way to constitute the training set. Then, we compare the training time and results in the same
neutral network to determine whether the sampling of important nodes can train data in less time
with smaller error.

In the test temporal graph, the classes that the nodes belong to are not labelled. So, in this test,
we use two ways to label nodes with three classes for the simulation test. In the actual datasets,
there is a smaller distance between nodes belonging to the same class. On this basis, the nodes are
labelled and classified in the following two ways.

The first way is to select several nodes u1, …, uk that are as far away as possible, which are
labelled as C1, C2, and C3, respectively. Then with these nodes as the central nodes, the set Su1 of
the neighboring nodes of these node can be obtained. A total of 60% of the nodes in the set are

Wu AB, et al. Node embedding research over temporal graph 25

labelled as the same classes as the central nodes, and the remaining nodes are labelled randomly;
The second way is that the paths should satisfy temporal reachability when central nodes

select neighboring nodes, and the set
1

T
uS is obtained. Then, the nodes are labelled in the same

method as the first way.
By comparing these two ways, we aim to objectively evaluate the experimental results of the

proposed method. We do not label the nodes with three classes in a random way. This is because
random labelling would assign different classes to two similar vectors and only recognize only one
class. So, we abandon this strategy after experiments. Nevertheless, this simulation method can
still encounter this problem inevitably, we can only increase the accuracy as much as possible.

The experimental results are shown in Table 4. The performances of traditional sampling
methods are getting worse when the temporality of nodes is considered. The method based on the
temporal walk strategy can better preserve the temporal relationship between nodes, thus obtaining
better experimental results. In Figure 9, it should be noted that as some datasets have a small size
and short training time, the horizontal coordinates of the left subgraph are not plotted
proportionally to ensure the visual effect of the experimental results. Meanwhile, the sampling
results of important nodes are compared with the results of the first sampling strategy (without
considering the temporality). Below the corresponding data, the left dataset shows the results of
random selection, and the adjacent right dataset demonstrates the experimental results of nodes
selected by the sampling method of important nodes. According to the two subgraphs on the left
and right, the sampling strategy of important nodes can train the neutral network in a shorter time
within tolerant errors (smaller than 2% in this test).

Table 4 Accuracy of node classification (%)

Problem
 Dataset
Algorithm

Without considering temporality Considering temporality

D0 D1 D2 D3 D0 D1 D2 D3

Basic 47.8 53.1 53.8 52.3 47.4 53.7 54.9 53.1
Deepwalk 49.7 55.6 57.6 56.6 48.2 54.3 55.8 54.3
Node2vec 50.2 55.9 57.9 56.4 48.6 54.5 56.5 55.2
CTDNE 48.6 54.3 55.7 54.7 49.2 54.9 54.9 53.8
ATGEB 50.4 54.8 56.3 56.2 51.1 55.8 58.6 57.6

7 Related work

Different from static graphs, the edges in temporal graphs have two states which can be
transformable to each other: active and inactive. The vertices in temporal graphs are connected
only when the edges are active. There are many examples of temporal networks in practice:

(1) Communication networks: E-mails, phone calls, and short messages are typical
point-to-point temporal networks;

(2) One-to-many information transformation networks: They are characterized by a single
user propagating information to many other users;

(3) Bioinformatic networks: These include brain neutron networks, metabolic networks,
and protein-protein interaction networks.

In the database field, the current research on temporal graphs mainly focuses on reachability
queries, shortest temporal paths, and prediction of arrival time.

The proposal of the DeepWalk [2] algorithm has brought attention to graph node embedding.
The DeepWalk algorithm pioneers the combination of the random walk strategy of graphs and the
skip-gram [3] model in natural language processing, which encodes words to vectors. The
DeepWalk algorithm encodes graph nodes to vectors by this innovative method. With the

26 International Journal of Software and Informatics, 2021, 11(1)

DeepWalk algorithm, researchers [4–7] tried to further improve this method by a biased sampling
method, thus designing different node embedding strategies such as node2vec, LINE, PTE, and
stru2vec. Although scholars claimed that these algorithms achieved better experimental results in
link prediction and node classification, they made no essential improvement to the DeepWalk
algorithm. In addition, different sampling strategies sometimes show significant distinctive
performances on different datasets. This provides inspiration for subsequent researchers to study
the node embedding problem. Specifically, with the current limited training ability for neutral
networks, the study of vector representation of graph node embedding should focus on specific
problems and topological characteristics of graph data. For example, it is different to perform node
embedding on heterogeneous graphs from that on knowledge graphs. To solve different problems
such as node classification and product recommendation, we need to propose research strategies
that satisfy the specific requirements.

Community detection [28,34,35] is always a hotspot research in graph data mining. At the initial
stage, researchers focused on gathering users with close topological distance to form a community.
However, as the problem was further studied with some practical applications, researchers
preferred to call up users with the same interest to form a community based on a common interest.
In this community, users usually have common interests or similar attributes. This allows
enterprises to more accurately recommend information or products to users in light of the interests.

8 Prospect

With attention given to node embedding of temporal graphs without attributes, we develop
some tests and confirm the proposed algorithm is effective and expandable from different
perspectives. As graph convolution cannot be used in representation learning for nodes in temporal
graphs without attributes, the embedding strategy in this paper cannot encode the node attributes to
vectors. The following problems will be studied in the subsequent work. (1) The node
representation on attribute-based temporal graphs will be studied. We try to study the connection
between the node attribute and the temporal relationship of nodes with the existing graph
convolution method, so as to propose a graph representation learning strategy which can conduct
convolution for attributed temporal graphs. (2) This paper has conducted the sampling of
important nodes for graphs. In the subsequent work, we will consider more for sample nodes. Both
node topology and the attribute relationship between nodes will be considered. We will use related
mining algorithms of graphs to select the important nodes, and try to make the vectors of the
selected nodes more representative and unified, so that the required weight parameters in the
neutral network can be trained better and faster.

References

[1] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE
Trans. on Neural Networks, 2009, 20(1): 61−80.

[2] Perozzi B, Al-Rfou R, Skiena S. DeepWalk: Online learning of social representations. Proc. of the 20th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2014. 701−710.

[3] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space.
arXiv:1301.3781v3.

[4] Tang J, Qu M, Wang MZ, Zhang M, Yan J, Mei QZ. LINE: Large-scale information network
embedding. Proc. of the 24th Int’l Conf. on World Wide Web. 2015. 1067−1077.

Wu AB, et al. Node embedding research over temporal graph 27

[5] Tang J, Qu M, Mei QZ. PTE: Predictive text embedding through large-scale heterogeneous text
networks. Proc. of the 21st ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2015.
1165−1174.

[6] Grover A, Leskovec J. node2vec: Scalable feature learning for networks. Proc. of the 22nd ACM
SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2016. 855−864.

[7] Leonardo FRR, Pedro HPS, Daniel RF. struc2vec: Learning node representations from structural identity.
Proc. of the 23rd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2017.
385−394.

[8] Qiu JZ, Dong YX, Ma H, Li J, Wang KS, Tang J. Network embedding as matrix factorization: Unifying
DeepWalk, LINE, PTE, and node2vec. Proc. of the 11th ACM Int’l Conf. on Web Search and Data
Mining. 2018. 459−467.

[9] Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs. Advances in Neural
Information Processing Systems. 2017. 1024−1034.

[10] Kipf TN, Welling M. Semi-Supervised classification with graph convolutional networks. Proc. of the
ICLR (Poster). 2017.

[11] Velickovic P, Cucurull G, Casanova A, Romero A, Liò P, Bengio Y. Graph attention networks. Proc. of
the ICLR (Poster). 2018.

[12] Wang YS, Yuan Y, Ma YL, Wang GR. Time-dependent graphs: Definitions, applications, and
algorithms. Data Science and Engineering, 2019, 4(4): 352−366.

[13] Takaguchi T, Yano Y, Yoshida Y. Coverage centralities for temporal networks. European Physical
Journal B, 2016, 89(2): 35.

[14] Frand D, Masoud TO, Jörg-Rüdiger S. Shortest paths in FIFO time-dependent networks. Algorithmica,
2012, 62(1−2): 416−435.

[15] Rossi L, Musolesi M, Torsello A. On the k-anonymization of time-varying and multi-layer social graphs.
Proc. of the 9th Int’l Conf. on Web and Social Media. 2015. 377−386.

[16] Przytycka TM, Singh M, Slonim DK. Toward the dynamic interactome: It’s about time. Briefings in
Bioinformatics, 2010,11(1): 15−29.

[17] Han JD, Bertin N, Hao T, et al. Evidence for dynamically organized modularity in the yeast
protein-protein interaction network. Nature, 2004, 430(6995): 88−93.

[18] Lèbre S, Becq J, Devaux F, et al. Statistical inference of the time-varying structure of gene-regulation
networks. BMC Systems Biology, 2010, 4(1): 1−16.

[19] Wu H, Cheng J, Ke Y, et al. Efficient algorithms for temporal path computation. IEEE Trans. on
Knowledge & Data Engineering, 2016, 28(11): 2927−2942.

[20] Li J, Han ZC, Cheng H, Su J, Wang PY, Zhang JF, Pan LJ. Predicting path failure in time-evolving
graphs. Proc. of the 25th ACM SIGKDD Int’l Conf. on Knowledge Discovery & Data Mining. 2019.
1279−1289.

[21] Hu JL, Yang B, Guo CJ, Jensen CS, Xiong H. Stochastic origin-destination matrix forecasting using
dual-stage graph convolutional, recurrent neural networks. Proc. of the IEEE Int’l Conf. on Data
Engineering. 2020. 1417−1428.

[22] Kumar S, Hamilton WL, Leskovec J, Jurafsky D. Community interaction and conflict on the Web. Proc.
of the World Wide Web Conf. 2018. 933−943.

28 International Journal of Software and Informatics, 2021, 11(1)

[23] Panzarasa P, Opsahl T, Carley KM. Patterns and dynamics of users’ behavior and interaction: Network
analysis of an online community. Journal of the American Society for Information Science and
Technology, 2009, 60(5): 911−932.

[24] Bai C, Kumar S, Leskovec J, Metzger M, Nunamaker JF, Subrahmanian VS. Predicting visual focus of
attention in multi-person discussion videos. Proc. of the Int’l Joint Conf. on Artificial Intelligence. 2019.
4504−4510.

[25] Wu HH, Huang YZ, Cheng J, Li JF, Ke YP. Reachability and time-based path queries in temporal
graphs. Proc. of the IEEE Int’l Conf. on Data Engineering. 2016. 145−156.

[26] Yuan Y, Lian X, Wang GR, Ma YL, Wang YS. Constrained shortest path query in a large
time-dependent graph. Proc. of the VLDB Endow, 2019, 12(10): 1058−1070.

[27] Yuan Y, Lian X, Wang GR, Chen L, Ma YL, Wang YS. Weight-Constrained route planning over
time-dependent graphs. Proc. of the IEEE Int’l Conf. on Data Engineering. 2019. 914−925.

[28] Bron C, Kerbosch J. Finding all cliques of an undirected graph (algorithm 457). Commun. ACM, 1973,
16(9): 575−576.

[29] Chen W, Wang YJ, Yang SY. Efficient influence maximization in social networks. Proc. of the 15th
ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2009. 199−207.

[30] Kumar S, Spezzano F, Subrahmanian VS, Faloutsos C. Edge weight prediction in weighted signed
networks. Proc. of the IEEE Int’l Conf. on Data Mining. 2016. 221−230.

[31] Kumar S, Hooi B, Makhija D, Kumar M, Subrahmanian VS, Faloutsos C. REV2: Fraudulent user
prediction in rating platforms. Proc. of the ACM Int’l Conf. on Web Search and Data Mining. 2018.
333−341.

[32] Paranjape A, Benson AR, Leskovec J. Motifs in temporal networks. Proc. of the 10th ACM Int’l Conf.
on Web Search and Data Mining. 2017. 601−610.

[33] Nguyen GH, Lee JB, rossi RA, Ahmed NK, Koh E, Kim S. Continuous-Time dynamic network
embeddings. Companion Proc. of the Web Conf. 2018. 2018. 969−976.

[34] Wang Y, Jian X, Yang ZH. Query optimal k-plex based community in graphs. Data Science and
Engineering, 2017, 2(4): 257−273.

[35] Fan WF, Hu CM. Big graph analyses: From queries to dependencies and association rules. Data Science
and Engineering, 2017, 2(1): 36−55.

Anbiao Wu (1993–), PhD candidate, CCF student member, mainly engaged in graph

databases and graph neural networks.

Ye Yuan (1981–), PhD, professor, PhD supervisor, CCF senior member, mainly engaged

in big data management, database theory and system.

Wu AB, et al. Node embedding research over temporal graph 29

Yuliang Ma (1990–), PhD, mainly engaged in graph databases and exploration of

location-based social networks (LBSN).

Guoren Wang (1966–), PhD, professor, PhD supervisor, CCF oustanding member,

mainly engaged in management of uncertain data, intensive computing of data,

management and analysis of visual media data, management of unstructured data,

distributed query processing and analysis, and bioinformatics.

	4.2 Simple analysis of embedding accuracy
	5 Sampling of Important Graph Nodes
	6 Experiments and evaluation
	6.1 Data and parameter setting
	6.2 Node clustering
	6.3 Link prediction and reachability test
	6.4 Node classification and sampling of important nodes
	7 Related work
	8 Prospect
	References

