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Abstract  Compared with conventional graph data analysis methods, the graph embedding 
algorithm provides a new graph data analysis strategy. It aims to encode graph nodes into vectors 
to mine or analyze graph data more effectively using neural network related technologies. Some 
classic tasks have been improved significantly by graph embedding methods, such as node 
classification, link prediction, and traffic flow prediction. Although substantial breakthroughs have 
been made by former researchers in graph embedding, the nodes embedding problem over 
temporal graph has been seldom studied. In this study, we propose an adaptive temporal graph 
embedding (ATGED), attempting to encode temporal graph nodes into vectors by combining 
previous research and the information propagation characteristics. First, an adaptive cluster 
method is proposed by solving the situation that nodes active frequency varies types of graph. 
Then, a new node walk strategy is designed in order to store the time sequence between nodes, and 
also the walking list will be stored in a bidirectional multi-tree in the walking process to get 
complete walking lists fast. Last, based on the basic walking characteristics and graph topology, an 
important node sampling strategy is proposed to train the satisfied neural network as soon as 
possible. Sufficient experiments demonstrate that the proposed method surpasses existing 
embedding methods in terms of node clustering, reachability prediction, and node classification in 
temporal graphs. 
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With the ultra-high speed computing power of computers, models for high-dimensional data 
and multi-level neural networks have been designed. In the research on the graph data in deep 
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learning, scholars did not find an effective network model for graph data at the early stage of 
neural network research as they are non-Euclidean data. Therefore, it is challenging to encode 
high-dimensional graph data to low-dimensional and structural vectors and to train parameters for 
acquired node vectors by neural networks. 

In 2009, Scarselli et al. [1] firstly proposed the concept of graph neural network model (GNN), 
and they encoded nodes to vectors by incorporating attributes of neighboring nodes. They 
provided a prototype of representation learning on graphs, and guided some researchers in the 
research on feature-based representation learning on graphs. However, it did not attract much 
attention at that time. Until 2014, the proposition of the DeepWalk [2] algorithm really triggered 
the research boom on graph (node) embedding. Inspired by the word2vec [3] algorithm in natural 
language processing, the DeepWalk algorithm designed a very simple yet effective approach for 
encoding nodes to vectors. Specifically, the DeepWalk algorithm calculated the similarity between 
nodes and node vectors by training the random walking list of each node (ID list of the node) 
through the skip-gram [3] model. Later, researchers have proposed node embedding algorithms 
such as large-scale information network embedding (LINE) [4], predictive text embedding (PTE) [5], 
node2vec [6], and stru2vec [7] based on the DeepWalk algorithm. However, all of these algorithms 
still follow the original framework of the DeepWalk algorithm. Essentially, compared with the 
DeepWalk algorithm, these algorithms focus more on biased node walk in terms of the node walk 
strategy. In other words, they define the walking probability of a node with its focus on the node 
topology. In 2018, Dong et al. [8] provided the matrices of the four algorithms, DeepWalk, LINE, 
PTE, and node2vec, which further illustrated the unified principle of these algorithms.   

Such walk strategy-based representation learning on graphs can preserve the node topology 
to some extent, especially the methods based on biased walk strategies such as node2vec, and has 
achieved satisfactory results in experiments. However, the walk strategy-based algorithms have a 
very obvious deficiency that they completely ignore the role of attributes between nodes in 
experimental results. This makes them unable to achieve satisfactory results on the data sets of 
some attributed graphs. In 2017, Hamilton et al. [9] designed a novel sampling strategy, called 
GraphSAGE (SAmple and aggreGatE). First, the node v performs sampling for its neighboring 
node vi (the i-th neighbor sampled by the node v). Then, the sampled node vi performs sampling 
for the node vij in the next layer (the j-th neighbor sampled by the node vi). At last, this strategy 
aggregates all the features of the sampled nodes from outside to inside, obtaining a new aggregated 
eigenvector of the node v. Although the GraphSAGE algorithm considers eigenvectors of nodes, it 
weakens the preserve for node topology. In the same year, Kipf [10] proposed a semi-supervised 
Graph Convolutional Network (GCN). Different from GraphSAGE, Ref. [10] convolves the 
features of all the neighboring nodes for a given node by weight sharing, which was fundamentally 
a weighted summation. It can be seen from ( 1) 1/2 1/2 ( ) ( )( )l l lH D AD H Wσ+ − −=   that scholars conducted 
Laplace transformation for the matrix Ã, which is obtained by adding the identity matrix IN and the 
adjacency matrix A, the node eigenvector H, and the matrix 

,i jjD A= ∑ 
, and then obtained the new 

node vector by the trainable weight parameter W. In addition, it can be known that the scholars 
conducted a multi-layer convolution. Meanwhile, the experimental results in Ref. [10] showed that 
as the number of layers increased, more precise results could be obtained. However, the quality of 
the experimental results would drop sharply once the number of layers exceeded a certain value. 
This is because once too much information is aggregated by a single node, the vectors between 
nodes cannot have certain variabilities, and this will result in model generalization. In Ref. [10], 
the convolution on neighboring nodes was uniformly performed on the premise of weight sharing. 
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However, in practice, the influences of some specific neighboring nodes on the attribute of a given 
node are bigger than those of other nodes, so these neighboring nodes should be assigned higher 
weights. On this basis, Velickovic et al. [11] proposed the Graph ATtention networks (GAT) in 
2018. Specifically, with the shared weight parameter W and the node eigenvector ih



, the weight 
coefficient between two nodes vi and vj is calculated by two functions LeakyReLU and Softmax:  
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As the eigenvectors of neighboring nodes are different, their weight coefficients should be 
variable. In addition, the shared weight parameter W changes during the learning process, so the 
weight coefficient between nodes also changes in the training process.   

Temporal graphs (also known as temporal networks [12,13] and time-varying graphs [14,15]) are 
time-based dynamic graphs with time labels on node edges. Data analysis on temporal graphs has 
important applications in bioinformatic networks, online social networks, and road traffic 
networks. In bioinformatic networks, the connections of biological functions are not always 
active[16]. For example, in protein-protein interaction networks [17] and gene-regulation networks 
[18], the connections of biological structures are sequential. The functions of structures can be more 
easily confirmed through the analysis of interactions of these structures in different periods. In 
road traffic networks [19–21], scholars could make route recommendations or reachability queries for 
users by combining the historical data of the networks. In social networks [22–24], scholars could 
characterize the relationships between users more precisely by recording their specific interactions.  

Existing research on node embedding focuses more on how to better preserve structural 
attributes of nodes in the vector representation of nodes. However, as connections between nodes 
in temporal graphs are time-varying, which indicates the propagation sequence of specific 
information between nodes, the node topology is dynamically changing over time. However, this 
situation is not fully considered in graph embedding strategies.  

In network graphs, temporality is not only limited to the temporality between two connected 
nodes. For example, the connection between the vertex 1 and the vertex 2 in Figure 1(a) exists 
only at the moments t1 and t2. When the static edge (1, 3) is not considered, there is a reachable 
path 1 → 2 → 3 between the vertex 1 and the vertex 2 only from the perspective of topology. 
However, once the temporal factor is considered, if the time stamp on the static edge (2, 3) is t3 
and t3 > t2> t1, then there is no reachable path between the vertex 1 and the vertex 2. In addition to 
connection temporality and path temporality, the attributes of nodes sometimes can be temporal as 
well. With the vertex 1 in Figure 1(b) as an example, the attribute of a node may vary with time. 
This phenomenon is prominent in e-commerce networks, and is a very difficult challenge to be 
solved in recommendation systems. 

According to the temporal property of temporal graphs compared with static graphs, the 
challenges of graph neural network models on temporal graphs can be summarized as follows. 

Node reachability: If two vertices vi and vj have only one reachable path in topology, but 
there is no connection possibility in practice, it is not appropriate for the node vi to incorporate the 
information of the vertex vj in sampling.  

(1) Multi-edges: Two vertices have multiple time-dependent edges at different moments in 
a time span. For example, there are two edges between the vertex a and the vertex b in Figure 1(c) 
at the moment 3 and the moment 5, respectively. Then during node walk or information 
integration, it is necessary to consider which edge is more appropriate. 
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(2) Path selection: The selection of time-dependent paths will directly affect the walking 
length of the starting point or the information amount of aggregated nodes. With the vertex b and 
the vertex d in Figure 1(c) as examples, if the path between the vertex b and the vertex c at the 
moment 6 is selected, the vertex b will not reach the vertex d; but if the path at the moment 2 is 
selected, then the vertex d is reachable. Thus, the most accurate information can be incorporated 
only if a most correct path is selected.  

(3) Time spans of paths: During vertex walk or information integration along a path, if the 
time span of this path is too long, the vertex near the end of the path and the vertex near the 
starting point should not be assigned the same weight. From the path (〈a, b, c, e, f〉) from the vertex 
a to the vertex f in Figure 1(c), it can be seen that the time span is only 7 between a and e, but 
when the path reaches the vertex f, the time span increases sharply to 50. At this point, the 
influence of the vertex f on the vertex a may be minimal. If the information of the vertex f is 
incorporated by the vertex a, the incorporated information of the vertex a is redundant and may 
even be wrong. Thus, the influences of the vertices with longer connection time on the starting 
point should be weakened as time goes on. 
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Figure 1. Example of temporal graphs 

There are many research fruits in graph embedding. However, when analyzing these 
experimental results, we find a remarkable and general problem that the graph representation 
learning methods based on different strategies have variable experimental results on different types 
of graphs. This is because some graphs are highly sensitive to their topologies, but insensitive to 
their attributes. For this type of graphs, the node embedding methods based on walk strategies can 
get better experimental results. The graphs which are sensitive to their attributes are more suitable 
to convolution-based graph representation strategies. On this basis, it can be known that it is 
almost impossible to represent all types of graphs by one kind of graph learning models within the 
existing theoretical framework and at technical level. Therefore, in order to deal with the challenge 
of representation learning on temporal graphs, we aim to design a graph embedding learning 
method which is sensitive to temporality, so as to obtain a graph representation learning method 
that is more suitable for the characteristics of temporal graphs. 

The innovations of this paper are as follows. 
(1) By integrating the existing graph embedding ideas and related characteristics of 

temporal graphs, we design a novel embedding strategy for temporal graphs, which can satisfy the 
analysis of temporal graphs.  
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(2) In order to solve the problem that the activity between nodes in different types of 
temporal graphs varies much, this paper designs an adaptive node walk model that satisfied 
temporal reachability and preserves the temporal property that the connections between a given 
node and its neighboring nodes varies with time as much as possible. 

(3) To obtain the walking list of nodes in different periods as fast as possible, we save the 
nodes in the walking process in bidirectional and temporal multi-trees. In this way, the walking list 
can be obtained simply and quickly after the walking was finished.  

(4) In terms of the characteristics of the embedding method and the graph topology, we 
reduce the training time of neutral network models for single nodes by only conducting sampling 
for important nodes.  

(5) Different experiments of temporal graphs are developed on different types of real 
temporal graphs, so as to verify the generality, accuracy, and efficiency of the proposed method. 

Section 1 gives the basic definitions related to temporal graphs and the definition of 
embedding on temporal graphs. Section 2 introduces a basic and temporal walking method. 
Section 3 proposes a more efficient walk strategy over temporal graphs. Section 4 performs 
sampling for important nodes. Section 5 analyzes the experiments on temporal graphs. Section 6 
describes related work. 

1   Problem Definition 

To organize the basic issues, this section will introduce the types of temporal graphs, which 
are the research objects, and define the basic concepts. The meanings of the symbols used in this 
paper are listed in Table 1.  

Table 1  List of symbols 
Symbol Meaning Symbol Meaning 

u, v Nodes in the graph Arr(u,v) Time from node u to node v 
GT Temporal graph network ul Walking list of node u 
Infi Information type in the network WL Set of walking lists of all the nodes 
Labi Label of node Winu Window of walking list of node u 
Nu Set of neighboring nodes of node u zi Vector representation of node vi 

T(u,v) Set of connection moments between node u and node v Rd Dimensional space of vectors 
 

Generally, the edges of temporal graphs are discrete, as shown in Figure 2(a). The edge of 
the node u pointing to the node v at the moment t is denoted as (u, v, t, λ), where λ denotes the 
arrival time, namely that the node u departs at the moment t and arrives at the node v after time λ. 
This paper does not involve the time-based path query between nodes [25], and focuses more on the 
moment at which the node u reaches the node v. Thus, λ can be ignored. In practice, t can be 
treated as t + λ. In this way, the temporal graph in this paper can be simplified to (u, v, t), where t = 
t + λ. With the vertices a and b in Figure 2(a) as examples, if information is sent from a to b at 
moment 0 and arrives after λ = 1 time unit, the weight of this edge is 1. However, in social 
networks, λ is often set as 0 due to the immediacy of information. In another case, λ denotes the 
duration of the connection, namely that the connection is established between two nodes at the 
moment t and the connection lasts for λ time units. On the principle of arrival as fast as possible, λ 
is ignored and the weight of the edge between the two nodes is assigned t. It should be noted that 
in real datasets, the connection between two nodes in the data representation is often immediate, so 
λ can be ignored. This type of discrete temporal graphs is the research object of this paper.  

Besides, there is a special kind of temporal graphs, which is also called as time-dependent 
graphs [26,27]. In this type of temporal graphs, the weights of edges are determined by the 
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time-dependent function f(t), which are not discrete, as shown in Figure 2(b). This paper does not 
focus on this type of temporal graphs due to their limited applications.  

(a) Temporal graph (b) Time-dependent edge weight
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Figure 2. Examples of different types of temporal graphs 

Definition 1 (Temporal graphs). The given temporal network GT(V, E, TE, X) denotes a 
directed temporal graph with temporal relationships between nodes; V the set of nodes, V = {v1, …, 
vn}; E the set of edges, and |V| = n, |E| = m. TE represents the set of moments when there is 
connection between nodes in the graph, and T(u,v) is the set of moments when there is a connection 
between the node u and the node v. As shown in Figure 2(a), T(a,c) = {2, 6} and T(u,v) ∈ TE. X 
denotes the set of node eigenvectors, and X = {x1, …, xn}, where xi indicates the eigenvector of the 
node vi. 

Definition 2 (Arrival time). For the given temporal graph GT(V, E, TE, X), the time for the 
node u reaching the node v is denoted as Arr(u,v), and Arr(u,v) = T(u,v) + λ.  

As λ = 0 in this paper, with Figure 2(a) as the example, Arr(a,b) = T(a,b) = {1}, Arr(a,c) = T(a,c) = 
{2, 6}.  

Definition 3 (Temporally reachable path). For the given temporal graph GT(V, E, TE, X), the 
path 〈v1, v2, …, vk〉 satisfies temporal reachability when and only when 

1 1 2( , ) ( , )min( ) max( ) | (0 2)
i i i iv v v vArr Arr i k

+ + +
≤ ≤ ≤ − . The 

1 2 1( , ) ( , )max( ) min( )
i i i iv v v vArr Arr
+ + +

<  indicates all the 
connections between the node vi+1 and the node vi+2 are before the point when the node vi is 
connected to the node vi+1. In other words, after the node vi reaches the node vi+1, there are no 
connections between the two nodes vi+1 and vi+2.   

With Figure 2(a) as an example, there are three reachable paths between the vertex a and the 
vertex f: 〈a, b, c, f〉, 〈a, c, f〉, and 〈a, d, f〉. With the path 〈a, d, f〉 as an example, if the arrival 
moment from the vertex a to the vertex d changes from 4 to 9, the path 〈a, d, f〉 is not a temporally 
reachable path. Because after the moment 9, the two nodes vi+1 and vi+2 are disconnected.    

Definition 4 (Temporal graph representation learning). For the given temporal graph GT(V, E, 
TE, X), the representation learning of temporal graph nodes can be formally indicated as follows. 
When the sampling nodes are temporally reachable, the node vi is mapped to a vector with the 
dimension of d by the learning function f, and d << |V|, namely 

f:V → Z, Z = {z1, …, zn}, zi ∈ Rd 

where the vector zi is the final vector representation of the node vi. 

2   Limitations of Walk Strategy in Temporal Graphs 

In light of the above definitions as well as characteristics and application scenarios of 
temporal graphs, we analyze the limitations and challenges of the node representation problem 
limited by the characteristics of temporal graphs. The first step is to analyze the difficulties of the 
problem as much as possible, and then we can arrive at the corresponding solutions. 
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Limitation 1: Walking lists cannot preserve the temporal factor. 

In the node representation learning based on walk strategies, the walking lists of a node 
should be obtained at first. With the vertices a and o in Figure 3 as examples, when the temporal 
relationship between the two vertices is not considered, the vertex a can reach the vertex o through 
the two paths 〈a, f, n, o〉 and 〈a, e, l, f, n, o〉, and the two walking lists ‘a, f, n, o’ and ‘a, e, l, f, n, o’ 
can be obtained. The distance between the two vertices a and o indicates the distance between the 
two in the topology. In the temporal relationship, as the path 〈a, e, l, f, n, o〉 does not satisfy the 
temporal reachability, the vertex a can only reach the vertex o through the path 〈a, f, n, o〉. 

In this way, the temporal property between nodes can be better preserved at the expense of 
some topological properties. This is certainly more friendly to the time-sensitive experimental 
results between nodes. In addition, the nodes which are only adjacent in the topology are not 
necessarily “close” to each other. When they do not satisfy the temporal reachability, the two 
vertices may not have many connections in practice. They just look “close” to each other 
constrained by the topological relationship.  
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Figure 3 Selection of random walking paths in a temporal graph 

Limitation 2: There are dynamic changes in local topological structures. 

Sometimes in a short time span, the dynamic changes in the relationship between nodes are 
limited in a local scope of a graph. From the node vi that walks at different moments, we can 
obtain many repeated paths. With the vertices a and d in Figure 3 as examples, the temporally 
reachable paths of the vertex a walking on the path 4 are the same at moments 2 and 4. When the 
time span is long, there is a different temporally reachable path at the moment 8. When there is a 
sudden and large change in the connection moment between nodes, there may be some “upheavals” 
in the related local topology. At this time, the vertex can walk after upheavals to obtain a new path, 
and the sampling should be performed as small as possible before upheavals.  

This phenomenon is common in practical networks. In a typical road traffic network, for 
example, the travel time of each road section varies with moments (morning peak, evening peak, 
and ordinary times), which leads to changes in local connectivity. People may need to select 
various paths at different moments when they travel from the origin A to the destination B.  

Limitation 3: The dynamic rates of change in different types of temporal networks vary greatly.  

The frequency of connections between nodes varies drastically in different types of temporal 
networks. Some may be measured in milliseconds (such as communication service networks), 
while some may be measured in minutes, hours, or even days (such as mail networks). In this case, 
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it is a great challenge to design an adaptive node sampling strategy so that the problem stated in 
the Limitation 2 can be solved in different types of temporal networks. 

Limitation 4: Time span should be considered in sampling paths. 

As the time variation has a big influence on the topology and the relationship between nodes 
in temporal graphs, the influence on a node cast by its neighboring nodes should also be limited to 
a certain time range. In a practical brain network (other practical networks such as traffic networks 
or mail networks have similar situations), a message sent from one neuron a1 to another neuron at 
the moment t1 does not spread forever in the network. After passing through many neurons, the 
message is sent to the neuron ai at the moment ti. Then after several moments, a message is sent 
from the neuron ai. It may simply be sent from the neuron ai and is no longer related to the initial 
neuron a1. Thus, the temporal path after this moment should be attributed to the neuron ai instead 
of a1. This phenomenon is very common in temporal networks. Especially in social networks, 
where information is often instantaneous, this phenomenon is more common.  

Therefore, when the initial node vi is sampled on a path that satisfies temporal reachability, 
the time span of the path increases as the number of nodes on the sampled path increases. 
Although the node at the end of the path and the initial node vi satisfy the temporal reachability, it 
is important to test whether the correlation between them is made indirectly by intermediate nodes 
and whether the nature of the transfer has changed. 

3   Basic Temporal Node Embedding Strategy 

According to the embedding method of existing walk strategies and the temporality between 
nodes, the simplest embedding strategy of temporal graphs is to record the arrival moment of the 
latest node in the walking list during the node walk and then select the next node that can be 
walked.  

First, the temporal graph GT should be transformed to a more convenient static graph, as 
shown in Figure 4. Figure 4(a) and Figure 4(b) show the original temporal graph GT and the 
transformed static graph, respectively. In Figure 4(b), nodes with the same color indicate the same 
node at different moments. For example, the vertex a has connections with the vertices b, c, and d 
at the moments 1, 2, 4, and 6 in Figure 4(a). In Figure 4(b), there are four vertices with the same 
color, including a1, a2, a4, and a6. The earlier vertices point to the later vertices in the 
chronological order, as shown by the edges with the same color and vertices. The subscripts of the 
vertices indicate the moment when the vertex u reaches its neighboring vertex v, or the moment 
when the neighboring vertex v reaches the vertex u, namely the outgoing and incoming edges of a 
vertex at different moments, as shown in the black edges with arrows.  

(a) Original temporal graph (b) Transformed static graph
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Figure 4. Example of a temporal graph 
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Considering merely the temporal reachability between nodes, we first transform the temporal 
graph into a static graph, as shown in Figure 4. Then, through existing random walk strategies of 
nodes and the skip-gram model in natural language processing, we design a basic node embedding 
algorithm (Basic algorithm) on temporal graphs.  

The basic principle of the algorithm is as follows. First, in temporal graphs, nodes lose their 
degree of “freedom” to walk due to the limitation of time. When the initial node v walks to the 
node u, it needs to select the neighboring nodes {u1, u2, …, un} of the node u to be walked. At this 
point, it should be determined whether the arrival moment Arr(v, u) of the node u is smaller than or 
equal to the maximum connection moment max(T(u,ui)) with its neighboring node ui, and only the 
node ui that satisfies the condition can be walked. Then, we can select one or more nodes from the 
nodes satisfying the condition to walk and sample. The walking list can be obtained after all the 
vertices are sampled. Then, we can obtain the vector representation of nodes with temporality by 
the skip-gram model. 

Algorithm 1. Basic temporal embedding 

Input: the temporal graph GT(V, E, TE), the skip-gram model, and the walking step L; 
Output: the representation vector Z of nodes in the temporal graph. 

1.  WL,ul=∅;  //WL: the set of the walking lists of all the nodes; ul: the walking list of the node u 
2.  FOR node u in GT 
3.    ul=u  //initialize the walking list of the node u 
4.    WHILE |ul|<L  //control the walking length 
5.      u=ul[－1]  // take the end node of the walking list and use it as the origin of the next walk 
6.      FOR node v in Nu  //Nu: the set of the neighboring nodes of u 
7.        Rand choose node v in V∈Nu and Visit(u)≤max(T(u,v))  //temporally reachable nodes exist 
8.        Visit(v)=t for t in T(u,v) and t>Visit(u)  //record the arrival time of the node v 
9.        ul=ul∪v  //update the walking list ul of the node v 
10.       IF ∀v in U max(T(u,v))>Visit(u) 
11.         BREAK  //fails to satisfy temporal reachability and the walk terminates 
12.     END FOR 
13.   END WHILE 
14. WL=WL∪ul  //update the walking list WL 
15. END FOR 
16. z=Skip-Gram(WL)  //return the vector representation of all the nodes 

In line 3, the node u is first used as the starting point of the walking list. The line 5 indicates 
selecting the node at the end of the existing walking list as the starting point of the next walking. 
Lines 7–11 indicate when the walking list stops at the node u, a node v satisfying the temporal 
reachability is randomly selected from the set of its neighboring nodes Nu and is added to the 
walking list ul of the node u. If there is no neighboring node that satisfies temporal reachability, 
the walk terminates. The codes in lines 14–16 indicate the walking lists of all the nodes are 
recorded at first (line 14), and the vector representation for each node is obtained by the skip-gram 
model. 

However, it should be noted that this basic embedding strategy on temporal graphs cannot 
overcome the limitations mentioned in Section 2. In particular, it cannot automatically recognize 
the dynamic rates of change of different types of temporal graphs, nor can it solve the time span 
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problem of sampling paths. With regard to this, we improve this basic algorithm to better deal with 
the above limitations. 

4   Improvement on Basic Temporal Node Embedding Strategy 

Since the dynamic rate of change varies greatly with different types of temporal graphs, the 
time span of sampling paths is very different in various types of temporal graphs. As the Basic 
algorithm proposed in the previous section cannot effectively solve these two problems, this 
section proposes a new embedding strategy for adapting to the dynamic changes of temporal 
graphs based on the Basic algorithm. 

4.1 Adaptive temporal graph embedding 
To solve the problems of the basic embedding strategy proposed in the previous section, we 

propose an improved sampling strategy of adaptive temporal graph embedding (ATGEB). The 
principle of the strategy is that the dynamic changes of networks are generated by messages 
spreading in the networks, and messages are propagated by establishing connections between users. 
Messages also change with time, namely that messages have a propagation lifetime in temporal 
networks. The time spans of different messages Infi and Infj spreading in networks can be 
completely coincident, partially coincident, and completely separated. From a global perspective, 
it is difficult to distinguish these different messages by time. However, if the propagation of 
messages is analyzed specially in a single node u, it is possible to preserve the characteristics of 
these messages indirectly by the connection between nodes. Assuming the messages Infi and Infj 
are both propagated in the time span [t1, t2], when the messages are propagated to the nodes ui and 
uj, respectively, we can distinguish the two messages indirectly by observing the nodes that have 
connections with the two nodes in [t1, t2] as the nodes that different messages act on may vary.  

On this principle, we can preserve the temporal relationships between the node ui and its 
neighboring nodes in the propagation of different types of messages as much as possible by letting 
the node ui walk under different message Infi. However, it should be noted that researchers 
generally cannot obtain the propagation paths of specific messages due to the protection of user 
privacy. We can study the problem from the set of activity moments of nodes in view of the 
propagation characteristics of messages. 

The connection moment between the node u and its neighboring node Nu is ( , )uu v N u vT T∈=


. 
Tu also includes the active time span of the node u: TSu = max(Tu) − min(Tu), the activity times |Tu |, 
and the activity frequency AFu = |Tu|/TSu. In the time span [min(Tu), max(Tu)], the distribution of 
the moments t1, t2, …, t|Tu| in the set Tu is not uniform as the propagated messages are different. 
Thus, we can distinguish the messages transferred by the node u by clustering the moment ti with 
the unsupervised DBSCAN algorithm. The average active interval of nodes is set as the object 
radius E = TSu/(|Tu| − 1), which can be calculated as follows.  

First, we sort the moments in Tu, obtaining Tu’ = [t1, …, t|Tu|]. Thus, the total interval is 
1 2 1[1,| | 1]

( ) ( )
u u

T i ii T
t t t t+∈ −
′ ′ ′ ′= − = − +∑ 3 2 | | | | 1( ) ... ( ) max( ) min( )

u uT T u u ut t t t T T TS−′ ′ ′ ′− + + − = − = , and the number of 
intervals is | Tu | − 1. So, E = TSu/(|Tu| − 1).   

We can obtain many set classes 1 [1, ] , [1, ]
, ,  and ( , )k i u i ji k i j k i j

C C C T C C
∈ ∈ ≠

= = ∅

 

 by clustering 
Tu with the DBSCAN algorithm, where | |1[ , , ]i

i i

C
i C CC t t=  , which are indirectly viewed as activity 

ranges of messages. For example, the time span of the set Ci is | |1[ , ]i
i i

C
C Ct t . Then, the node u walks 

in the time periods that are clustered, obtaining the walking list in each time period. Thus, the 
temporal relationships between the node u and its neighboring nodes under different messages can 
be saved. The specific steps are described in Algorithms 2 and 3.  

This unsupervised clustering method is a good solution to the problem that the activity 
frequencies of nodes vary in different types of temporal graphs. Because after the object radius E 
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is set, the moments can be clustered automatically. If a node u sends messages regularly to its 
neighboring nodes, namely that AFu remains constant, this indirectly shows the similarity of the 
propagated messages or even indicates that one message is being transmitted all the time. By this 
adaptive clustering method, the elements in Tu can be clustered to a same type. This can reduce the 
possibility of repeated sampling at different time periods and avoid excessive redundancy of 
collected data to a certain extent.  

Algorithm 2. ATGEB 

Input: the temporal graph GT(V, E, TE) and the skip-gram model; 
Output: the representation vector Z of nodes in the temporal graph. 

1.  WL,ul=∅;  //WL: the set of the walking lists of all the nodes; ul: the walking list of the node u 
2.  FOR node u in GT 
3.    Tu,ul=∅ //initialize the active moments (connected with its neighboring nodes) and the 

walking list of the node u 
4.    FOR node v in Nu     //Nu: the neighboring node of the node u 
5.      Tu=Tu∪(T(u,v)) 
6.      ( ), /(| | 1)u u u uT Sort T E TS T′ = = −    //sort the moments in Tu and set the object radius 
7.      1,..., ( , )k uC C DBSCAN T E′=   //cluster the sorted Tu’ in the radius E 
8.    FOR C in Ci 
9.      ul=ul∪PathTree(u,C) //summarize the walking lists in different time periods to update the 

walking list of u 
10.   END FOR 
11.   END FOR 
12.   WL=WL∪ul     //update the walking list WL 
13. END FOR 
14. Z=Skip-Gram(WL)     //return the vector representation of each node 

The problem that how the node u walks to its neighboring nodes at different time period Ci (as 
shown in line 9) is explained in Algorithm 3: The node u selects a node v from its neighboring 
nodes Nu; the node v has connection with u in the time period Ci, and the connection moment T ∈ 

Tu approximates or equals to the initial time period min(Ci). Then, the selected node v walks to 
track the propagation path of messages. 

Algorithm 3. PathTree 

Input: the temporal graph GT(V, E, TE), the node u, and the time period Ci 
Output: the walking list ul of the node u in the time period Ci 

1.  u.prev,u.next=∅,u.name=u  //prev and next save preceding nodes and successor nodes, respectively 
2.  Q.pull(u),TL=∅  //u 作为树的根节点,TL 保存树的叶子节点地址 u indicates the root node and TL 

saves the addresses of leaf nodes 
3.  WHILE Q is not empty  //build a walking tree 
4.    u←Q.push 
5.    FOR each node v in Nu 
6.      IF Nu=∅  //record the node as a leaf node if there is no neighboring node and the walk 

terminates 
7.        TL.pull(u)  //record it as a leaf node 
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8.        BREAK 
9.      ELIF T(u,v) exist in [min(Ci),max(Ci)] and u.Arru<max(Ci)  //determine whether the node can 

reach within the specified time period 
10.       v.Arrv=t for t in T(u,v) and t>=Arru  //record the arrival time of walk to the new node 
11.       v.prev=u, v.name=v;  //point out the preceding node to extract the walking list 
12.       u.next.pull(v)  //save the successor node 
13.       Q.pull(v) 
14.     ELIF T(u,v) not exist in [min(Ci),max(Ci)] 
15.       TL.pull(u)  //the path is unreachable in specified time, so the path ends and the node is set as 

the leaf node 
16.   END FOR 
17. END WHILE 
18. FOR tree leaves tl in TF:  //search for several walking paths by a leaf node 
19.   list=∅  // initialize the walking list 
20.   WHILE tl!=∅ 
21.     list=list∪tl.name  //obtain the name of the node 
22.     tl=tf.prev  // search the node list for the root node by the leaf node 
23.   END WHILE 
24.   ul=ul∪tl  //obtain a list set of the node u 
25. END FOR 
26. RETURN ul  //return the walking list of the node u in the specified time period 

Algorithm 3 is explained in detail with the example shown in Figure 5. First, it should be 
noted that the tree in Figure 5 is a multi-branch one that is temporally reachable, namely that the 
paths from the root node to leaf nodes are temporally reachable. In line 1, the name of the root 
node, the set of the successor nodes, and the preceding nodes are initialized. Since it is a 
multi-branch tree, the non-leaf nodes of the tree keep the set of addresses of their successor nodes, 
while the preceding nodes save a single address. Lines 5–8 indicate that if the node has no 
neighboring nodes, it is recorded as a leaf node and its address is recorded in the leaf node set TL. 
Lines 9–13 reveal if there is a neighboring node v that satisfies the requirement, namely that the 
path is reachable in the time period Ci, the arrival time and the addresses of the preceding and 
successor nodes of the node v are updated, and the node name is recorded and put into the tree. 
Lines 14 and 15 signal the node u has no reachable neighboring nodes. Then, the node u is used as 
a leaf node and its address is recorded in TL. 
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Figure 5. Selection of walking paths of temporal graph 

Then, lines 18–24 indicate extracting the walking list from the addresss of the leaf nodes 
recorded in TL. As shown in Figure 5(b), the node f walks to the root node a, so a node list ul1 = ‘f, 
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c, b, a’ can be obtained. It should be noted that this list is opposite to the real list. Therefore, in the 
implementation of the algorithm, it is necessary to put the proposed node at the top of the list each 
time, so that the real list ul1 = ‘a, b, c, f’ can be obtained. In line 24, ul indicates the list set of the 
node in this time period, e.g., ul = [[a, b, c, f], [a, c, e], [a, c, f], [a, d, f]] in Figure 5(b). Thus, a set 
of walking lists of the node u related to the message Infi can be gotten in the time period Ci. 

4.2 Simple analysis of embedding accuracy 
From the perspective of the generation of representation vectors of nodes, the operation 

principle of the skip-gram model in node embedding is introduced. As shown in Figure 6, the 
one-hot vector of a node is weighted by the hidden layer and then classified by the output layer. 
The differences between the softmax layer of the nodes in the moving window w and the other 
nodes in their probabilities and the outputs are calculated and used as the losses, which are 
transferred backwards to update the weight of each layer. Then, the updating is continuously 
conducted by the moving window. At last, the vector representation Z of the node can be obtained 
by the weight of the hidden layer H. 

0
0
0

...

1
0

0

0

one-hot vector 
representing nodes

…
…

…

∑

∑

∑

∑

∑

∑

∑

…

…

…

…

‘Arthur’

‘August’
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‘Lydia’

User (node)

d neurons N neutrons  
Figure 6. Diagram of node embedding 

It is assumed that there are I messages transferred by users in a temporal network: Inf1, 
Inf2, …, InfI, and there are L node labels (classes): Lab1, Lab2, …, LabL. The users with different 
labels have different sensitive degrees to different messages. This indicates that labels determine 
that users have different probabilities of receiving and propagating different messages, namely that 
users contact different users through different messages. On the contrary, it can be deduced that 
several kinds of messages Infi, Infj, …, Infk can indirectly determine the labels of users, f(Infi, 
Infj, …, Infk) = Labi. Thus, the label of a user can be more accurately determined by the type of the 
messages the user receives or propagates. 

In a neural network with classified nodes, the higher similarity between the vectors of two 
nodes means the greater possibility that the two nodes belong to one type of nodes, namely 

 [sim(zi, zj) > sim(zi, zk)] ≈ [P(ui, uj ∈ Labl) > P(ui, uk ∈ Labl)]. 

In Figure 6, the user list is indicated by U; the softmax layer by the output layer O; the hidden 
layer by H. In a trained skip-gram model, for the user nodes u and v with the same label, it is 
assumed that the users corresponding to the first w classes are ( 1 ,uU 2 ,..., wuuU U ) and 
( 1 2, ,..., wvv vU U U ) after they are output by the softmax layer. The embedding vectors of the two are 
zu and zv. It has been known that the value H = WH × [0, 0, 0, …, 1, 0]T of the neuron in the hidden 
layer directly determines the vector of a node and the class U of the node after the output layer, 
namely Hu → zu and Hv → zv. As it has been known that the nodes u and v have the same label, the 
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embedding vectors of the two nodes are similar: zu ≈ zv, so Hu ≈ Hv. As the hidden layer also 
determines the output layer, there is 1 2 1 2( , ,..., ) ( , ,..., )w wu vu u v vU U U U U U≈ . 

The above mainly describes the forward propagation mechanism in the node embedding 
network. The updating method of the hidden layer is further indicated based on this. It is assumed 
that the node u is in a walking list ul and a window Winu = {u1, …, u, …, uw} with a size of w is 
constituted with u as the central. In this window, the training error of networks 

1/2Δ ( ( , ))
v Win

E y P u v
∈

′= −∑ , where y′ = Onehotu × WH × WO. As the size of Winu is limited, it is 
impossible to put all the nodes in it. Thus, for a node except the node u, with the probability of it is 
in the window Winu drops, P(u, v) decreases. As the training goes on, the classification of the 
one-hot vector Onehotu of u in the skip-gram network tends more towards the nodes that have a 
high frequency in Winu, which can be known by the characteristics of the output layer softmax. It 
can be known that the frequency of the node u in the window Winu influences its classification in 
the skip-gram model. Further, it also affects the value Hu of the neutron in the hidden layer to 
influence zu according to the analysis in the last paragraph 

Thus, it can be known from the above analysis that for the nodes u and v with the same label, 
to make their embedding vectors zu and zv similar, it is necessary to make the sets of high 
frequency nodes in the moving window Winu and Winv that use the nodes u and v as the central 
nodes in all the walking list ul coincide as much as possible, and the nodes with the same label 
should have the similar coincidence degree. This is because if the nodes with different labels have 
similar coincidence degree, they can generate the similar representation vector Z, which is 
contradictory to the premise that they have different labels. 

For the nodes u and v with the same label, it is assumed that the sets of their possible walking 
nodes are u

ulS  and v
ulS  respectively, and the possible walking sets in Algorithm 2 are u

ulT  and 
v

ulT  respectively. It can be known that ,u u v v
ul ul ul ulT S T S⊆ ⊆ . For the walking windows Winu = 

{u1, …, u, …, uw} and Winv = {v1, …, v, …, vw}, if the label of the two nodes is related to Infi and 
Infj and it is assumed that the set of active nodes influenced by the two messages is 

, ,v
Inf Inf ul InfS S T u v S∈ ∩ ∈ , the nodes in SInf indirectly show that they are active under the impact 

of Infi and Infj. Thus, compared with the random walk strategy, in the walking path ul including the 
nodes u and v under the proposed walk strategy, the 1/2(w − 1) nodes before and after the node u(v) 
(namely the nodes in the window Winu or Winv) are more likely to be included in SInf, namely that 
the nodes in the window have a stronger probability to have a same label with the node u(v). This 
indicates there is a high probability of common nodes in the windows with the two nodes as the 
central nodes (compared with the random walk strategy). As analyzed above, if there are more 
common high-frequency nodes, more similar vectors can be obtained. 

5 Sampling of Important Graph Nodes 

In graphs, there are usually a large number of nodes gathering in a community within a very 
short distance due to their complex topological structures. It can be seen from the principle of the 
node embedding algorithm that many nodes in a dense community will obtain several similar 
walking lists, which are further encoded to similar vectors. If these similar vectors belong to a 
same class Ci, and the classification of nodes should be completed in a period as short as possible 
and can be tolerant of certain model errors, is it possible to train the parameters of the neutral 
network by sampling several vectors with similar nodes in the same type? In this way, the 
parameter weights of the neutral network can be trained in a period as short as possible.  
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The walking lists of the nodes ui, uj, and uk are uil, ujl, and ukl, respectively. If the distance 
between ui and uj is d(ui, uj) > d(uj, uk), the node ui is closer to uj than to the node uk. Thus, 
generally the common neighboring nodes of the two nodes also satisfy Nui ∩ Nuj > Nuj ∩ Nuk. Thus, 
for the node v walking in the range of w (the size of which is same as that of the window of the 
skip-gram model), after its walking list vl passes the node uj, the probability of the walking list 
passing the node ui is stronger than that of the walking list passing the node uk, namely P(vl → 
uj|vl → ui) > P(vl → uj|vl → uk). On the contrary, the probability of the walking list from the node 
ui to the node uj is also higher than that of the walking list from the node ui to the node uk. 
Therefore, for a walking list of a random node wl ∈ WL, the probability of its including both ui and 
uj in a window range with a size of w is greater than that of its containing both uj and uk, namely 
P(uj, ui ∈ wl)>P(uj, uk ∈ wl). From a global perspective, ( , ) ( , )i j j kwl WL wl WL

P u u wl P u u wl
∈ ∈

∈ > ∈∑ ∑ , 
so the times of ui and uj together in the window w is higher than that of uj and uk. In the skip-gram 
model, the vector of the node u is updated through the other nodes which are also in the window w 
with u in the walking list wl. Hence, among the vectors zui, zuj, and zuk of the three nodes, the first 
two should have greater similarity, namely ( , ) ( , ).

i j j ku u u usim z z sim z z>   
In view of the above analysis, it can be known that we can select several dense subgraphs g1, 

g2, …, gm in a graph as dense communities to select important nodes. The dense subgraph gi 
should satisfy that for any two nodes vi, vj ∈ gi, the distance between the two nodes d(vi,vj) should be 
as short as possible. The most obvious idea is to mine dense communities by the k-core algorithm. 
Although the k-core algorithm can be used to obtain the dense subgraph gi by increasing the value 
of k, the subgraphs obtained by this method cannot make d(vi,vj) as small as possible. In Figure 7, 
for example, after the nodes e, f, and g are deleted, the remaining nodes constitute a complete 
2-core subgraph. However, the distance d(c,d) between the nodes c and d is 6. On the small-world 
principle, we can know that it is a long distance in graphs. Therefore, it is difficult to meet the 
demands of mining communities only by satisfying the density requirement, and the distance 
between nodes in a community should also be limited. The kr-Clique algorithm stated in 
Reference [28] can satisfy the demands, where k indicates the degree of nodes, r the hop of nodes, 
namely that any two nodes in a community can reach to each other in r hops. 

bc a

g

f d

e

  
Figure 7. k-core communities of graph 

The kr-Clique algorithm stated in Ref. [28] aims to find all the communities that satisfy 
requirements, but it is unnecessary in this paper. The sampling of important nodes is to select more 
representative node vectors than the node class Ci to constitute the training sample set, which does 
not need to select all the nodes. On this principle, several nodes vc1, vc2, …, vcn with high degrees 
are selected in the graph. Then, with these nodes as the central nodes, the node 

1
| ( ( ) )

cvu u N d u k∈ ∩ >  with the degree of neighboring nodes higher than k is selected. The 
neighboring nodes of the eligible node u are selected with the node u as the central node. These 
steps are repeated for r times, and then a rough kr-Clique algorithm about the central node vc2 can 
be obtained, which can satisfy requirements. After the kr-Clique communities of the central node 
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vc1 are selected, the nodes are clustered according to classes, obtaining the node sets SC1, SC2, …, 
SCc. Then we can randomly select node vectors from each cluster with a small percentage (10% for 
example) to constitute the training set rather than use 60% of the nodes in the graph as the training 
set. This is because many of the 60% nodes belong to a same class and the vectors have high 
similarities. Then we can select important nodes of the next central node vc2. 

This section selects central nodes and important nodes by an algorithm similar to the 
node-degree-based heuristic algorithm in the maximum influence problem [29], as shown in 
Algorithm 4. 

Algorithm 4. Important nodes sampling (INS) algorithm 

Input: the temporal graph GT(V, E, TE), the node classes C1, C2, …, Cc, and the number of central nodes N; 
Output: the vector set ZIN of important nodes. 

1.  krC=∅,i=0,ZIN=∅   //krC: the set of selected community nodes 
2.  WHILE (i<N) 
3.    FOR node u in W=GT∩krC 
4.      Chose ui as central nodes if d(ui)>d(uj)|(uj∈W)  //select the node with the maximum node 

degree as the central node 
5.      1 2, ,

iu i ikrC u BN u BN= = = ∅   //BN1 and BN2 save the boundary points of the 
community 

6.      FOR j in range(r)    //the maximum hops between nodes in the community 
7.        WHILE BN1!=∅ 
8.          v=BN1.pop    //select new nodes to the community through boundary points 
9.          2. ( ), . ( ) for  in  and ( )

ii u i i v iBN pull v krC pull v v N d v k>  
10.       END WHILE 
11.       BN1=BN2,BN2=∅   //update the boundary points in BN1 through BN2 
12.     EBD FOR 
13.   END FOR 
14.   Chose important nodes S in 

iukrC  in a certain proportion //select the set S of important nodes 
15.   ,

i

IN IN
uZ Z S krC krC krC= ∪ = ∪  

16. END WHILE 
17. RETURN ZIN   //return the vector set of important nodes 

In line 1, krC indicates the set of the selected community nodes, and i controls the number of 
the selected central nodes in the community. Lines 3 and 4 mean the new central node ui should 
not be in the already selected communities, namely that the distance between ui and all existing 
central nodes should be at least 2, and the degree of ui should be greater than any other node. In 
this way, the central nodes can be selected in the widest possible range of the graph rather than in a 
local area of the graph. For example, in Figure 7, a (3, 3)-Clique is selected with a as the central 
node, and b is selected as the central node among the remaining nodes. Lines 5–12 mean forming 
the krCui community with the node ui as the central node. First, we search for the suitable 
neighboring nodes through BN1 to expand the community krCui, and record the boundary points to 
BN2. After these steps are completed, the boundary points of BN2 are assigned to BN1 for new 
expansions. Line 14 shows the selection of important nodes, which has been explained above.    

The above-mentioned important nodes are selected based on dense communities. However, 
there are many nodes or new connected structures that are outside of these communities in actual 
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graphs. To unify the representative nodes, it is necessary to randomly select nodes from these 
dissociated nodes in a same proportion to add them to the training sample set ZIN. 

6 Experiments and evaluation 

To fully verify the performance of the proposed algorithm on different types of data based on 
the design and verification of the algorithm test, we select four actual datasets which vary greatly 
in node (edge) size, distribution of temporal edges, density, and other graph structures as the input 
data, and verifies the algorithm from four perspectives of node clustering, link prediction, node 
classification, and temporal reachability of nodes. 

6.1 Data and parameter setting 
(1) Data 
The datasets D0 [30] and D1 [31] come from two Bitcoin trading platforms Bitcoin OTC and 

Bitcoin Alpha, respectively. These two datasets contain financial transaction data of users, not 
ordinary social networks, where users are connected to their neighbors only once, which can be 
seen by the fact that the temporal edges are equal to the static edges. The datasets D2 [32] and D3 [32] 
come from temporal network data of the stack exchange websites Math Overflow and Super User, 
respectively. The node size, static edges, temporal edges, and activity frequency of the four 
datasets are listed in Table 2. In addition, it can be seen from Table 2 that the datasets vary largely 
in different indexes, so they satisfy the experimental requirements. 

Table 2  Information of datasets 

Dataset Number of 
nodes 

Temporal 
edge 

Average 
temporal edge 

Static 
edge 

Average 
static edge 

Time 
span 
(day) 

Activity 
frequency 

D0 6k 36k 6.05 36k 6.05 1 903 18.91 
D1 4k 24k 6.39 24k 6.39 1 901 12.62 
D2 25k 507k 20.41 240k 9.67 2 350 215.74 
D3 194k 1443k 7.44 925k 4.77 2 773 520.38 

(2) Comparison algorithms 
In addition to apply the proposed algorithm to the four datasets, we also adopt the following 

three algorithms to the datasets for comparison. Since some algorithms do not support the 
temporally reachable walk strategy, the temporal graphs are viewed as static graphs when these 
algorithms are applied to the datasets, namely that time stamps on edges are ignored. 

DeepWalk: First, the time stamps are deleted from the temporal graph GT, and it is 
transformed to a static directed graph. Then, the nodes are encoded to vectors by the DeepWalk 
algorithm based on the static graph; 

Node2vec: It is different from the DeepWalk algorithm in the following aspects. When the 
node t walks to the neighboring node v after it reaches the node u, the walking probability αpq(t, v) 
of every neighboring node of the node u should be calculated, and then the node v walked at the 
next step is selected by the Alias sampling method. The walking probability is calculated by 
Equation (1): 

 
1/ ,  if 0

( , ) 1,      if 1
1/ ,   if 2

α
=

= =
 =

tv

pq tv

tv

p d
t v d

q d
                             (1) 

where dtv indicates the path length between the two nodes. In this test, p is set as 0.25; q as 4. The 
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Alias algorithm is used to perform walk and sampling; 
CTDNE [33]: The principle of this algorithm is consistent with that of the Basic algorithm in 

this paper and the DeepWalk algorithm. During node walk, researchers set a probability of nodes 
related to time, namely biased sampling, to influence the selection of neighboring nodes by the 
given node. 

(3) Experimental environment 
The experiment is conducted under the conditions including Windows 10 64-bit operating 

system, CPU with i5-8400@2.80Hz, 24G RAM, 500 GB hardware capacity. The program 
language is Python 3.7. 

(4) Parameters 
When we use the skip-gram model to generate vectors, the window length is set as 5; the 

walking steps L of nodes are set as 10, 20, 30, 40, and 50, respectively; for the vector zu generated 
by the node u, the dimension d = 100; the learning rate r = 0.01. The loss function in the 
classification task is the cross-entropy loss function. 

6.2 Node clustering 
In the node clustering test, the clustering performance of each algorithm is evaluated by the 

number of static edges crossing clusters (EC) and the number of temporal edges crossing clusters 
(TC). Through the representation vectors of nodes, the nodes are clustered to N classes: C1, C2, …, 
CN, where Cv indicates the class that the node v belongs to. Thus, 

( , ) | ( )
T

u v
v u Sv GEC v u S N C C∈∈= ∈ ∩ ∀ ≠



, namely that when the node v and its neighboring node u 
belong to different classes, the edge (v, u) crosses different clusters. ee ECTC T∈=



, where e 
indicates the edge in EC; Te the set of moments of the edge e.  

The nodes are clustered to four classes and five classes respectively to analyze the 
experimental results more objectively. Then the performance of each algorithm with different 
clustering methods is calculated, as shown in Figures 8 and 9, where i in TC(i) and EC(i) indicates 
the walking length of nodes and varies from 10 to 50. 

     
(a) D0                                    (b) D1 

     
(c) D2                                      (d) D3 

Figure 8.  Node clustering in a temporal graph 
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Figure 9. Analysis of sampling of important nodes 

For the subgraphs in Figure 8, the vertical axis indicates the number, and the horizontal axis 
the walking length of nodes in TC and EC, which varies from 10 to 50. It can be seen from Figures 
8(a) and 8(b) that the proposed method converges faster in the initial stage, but gradually tends to 
be stable with the increase of the walking length. This is because once the sampling strategy is 
limited by time, the walking path will end automatically when it reaches a certain length. It can be 
seen that the proposed method is basically stable after 30 steps. Thus, the walking length should be 
within 30 steps. From Figure 8(a) and Figure 8(b), the ATGEB algorithm performs better in the 
early stage, but its performance is basically same with DeepWalk and node2vec as the walking 
length increases. From Figure 8(c) and Figure 8(d), the latter two algorithms perform better in the 
datasets D2 and D3. Through this experiment, we aim to uncover that for the traditional node 
clustering problem, the strategy based on temporal node embedding is more sensitive to the 
attributes of datasets, namely that it has some advantages for some specific types of datasets. 
However, it is not as versatile as the traditional algorithms such as DeepWalk and node2vec which 
can be applied to all types of data. 

6.3 Link prediction and reachability test 
In the test, sample vectors are selected for each node v respectively in the link prediction, and 

1/2|Nv| neighboring nodes of the node v are selected as positive samples. z(u,v) = zu+zv, where “+” 
indicates connection, and the corresponding class is 1, indicating there is an edge between the two 
nodes. Then, we randomly select the nodes 1 2 1/ 2| |, ,...,

vNu u u  with the same number in the graph, 
and determine whether there is an edge between the node v and the node ui. If there is an edge, the 
corresponding class of the vector z(v,ui) is 1; otherwise it is 0. In the test for detecting temporal 
reachability, we set the class of vectors by calculating whether the two related nodes satisfy 
temporal reachability. After samples are collected for all the nodes, a total of 20% of them 
constitute the training set and the remaining 80% make up the test set. The test structure can be 
seen in Table 3, and the values are all the highest ones among the results under different walking 
lengths. 

Dataset 
Algorithm D0 D1 D2 D3 

Basic 43.2 46.7 50.1 52.1 49.7 51.2 47.5 50.6 
Deepwalk 46.5 49.4 52.4 54.5 54.9 56.3 53.8 55.9 
Node2vec 47.3 49.6 52.5 54.3 55.6 57.1 52.9 55.7 
CTDNE 45.8 47.6 51.0 53.1 51.4 54.2 50.1 52.6 
ATGEB 46.3 49.7 51.3 53.5 53.2 55.1 51.7 54.8 
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First, it should be noted that the performance of the node embedding of temporal graphs in 
link prediction is limited by its walk strategy, and its performance is probably worse than that of 
the normal walk strategy, especially in the case of few connection moments between nodes. As 
shown in Table 3, the method based on temporal sampling has obvious worse performance in link 
prediction in the datasets D0 and D1 because the connection between nodes is single, seen from 
the data information in D0 and D1. Since the networks are meant for bitcoin trading, there is only 
one connection between users in the global range, namely that the temporal edges are the same as 
the static edges. This also leads to the fact that the walking length of any method based on the 
temporal walk strategy is largely limited by time. However, as the number of connections between 
users increases, the performance of the proposed algorithm is less poor than that of the DeepWalk 
algorithm and the node2vec algorithm. The proposed algorithm only performs slightly worse than 
the two algorithms in D2, and has better experimental results in D3. 

Table 3  Accuracy of link prediction and temporal achievability (%) 

Problem 

        Dataset 
 Algorithm 

Link prediction Temporal reachability 

D0 D1 D2 D3 D0 D1 D2 D3 
Basic 64.2 61.0 60.9 56.6 65.3 63.2 62.9 58.8 

Deepwalk 79.3 82.5 71.9 80.8 76.3 78.6 70.8 78.3 
Node2vec 81.9 81.8 70.2 79.7 79.4 79.5 68.1 77.9 
CTDNE 67.9 64.7 65.9 59.4 81.7 80.7 71.9 80.3 
ATGEB 78.4 76.4 71.6 81.5 85.3 82.9 72.8 82.7 

The performance ranking of the algorithms changes in the detection of temporal reachability 
between nodes. In this problem, the accuracy of the traditional walk strategy plummets. This is 
because the traditional walk strategy does not consider the temporal relationship between nodes at 
all, namely that the representation vectors of nodes do not fully preserve the temporal feature of 
nodes. By contrast, the method based on the walk strategy in temporal graphs satisfies temporal 
reachability in the sampling process. It can be seen that the ATGEB algorithm performs much 
better in the datasets D0 and D1, while its advantages in the datasets D2 and D3 are not so obvious. 
This is because in the latter two datasets, nodes have higher activity frequency and more frequent 
connections, so the paths have a higher probability to satisfy temporal reachability than that in the 
first two datasets. 

6.4 Node classification and sampling of important nodes 
This section focuses on classification of nodes and sampling of important nodes. In the 

sampling of important nodes, the training time and results with different training sets and different 
selection methods of training sets are compared. There are three ways to select the training set: the 
first one is to normally select 20% of the dataset S as the training set; the second one is to 
randomly select 10% of the dataset S as the training set; and the last one is the sampling method of 
important nodes stated in Section 4, which selects the data with the same amount of the second 
way to constitute the training set. Then, we compare the training time and results in the same 
neutral network to determine whether the sampling of important nodes can train data in less time 
with smaller error.  

In the test temporal graph, the classes that the nodes belong to are not labelled. So, in this test, 
we use two ways to label nodes with three classes for the simulation test. In the actual datasets, 
there is a smaller distance between nodes belonging to the same class. On this basis, the nodes are 
labelled and classified in the following two ways. 

The first way is to select several nodes u1, …, uk that are as far away as possible, which are 
labelled as C1, C2, and C3, respectively. Then with these nodes as the central nodes, the set Su1 of 
the neighboring nodes of these node can be obtained. A total of 60% of the nodes in the set are 
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labelled as the same classes as the central nodes, and the remaining nodes are labelled randomly; 
The second way is that the paths should satisfy temporal reachability when central nodes 

select neighboring nodes, and the set 
1

T
uS  is obtained. Then, the nodes are labelled in the same 

method as the first way. 
By comparing these two ways, we aim to objectively evaluate the experimental results of the 

proposed method. We do not label the nodes with three classes in a random way. This is because 
random labelling would assign different classes to two similar vectors and only recognize only one 
class. So, we abandon this strategy after experiments. Nevertheless, this simulation method can 
still encounter this problem inevitably, we can only increase the accuracy as much as possible.  

The experimental results are shown in Table 4. The performances of traditional sampling 
methods are getting worse when the temporality of nodes is considered. The method based on the 
temporal walk strategy can better preserve the temporal relationship between nodes, thus obtaining 
better experimental results. In Figure 9, it should be noted that as some datasets have a small size 
and short training time, the horizontal coordinates of the left subgraph are not plotted 
proportionally to ensure the visual effect of the experimental results. Meanwhile, the sampling 
results of important nodes are compared with the results of the first sampling strategy (without 
considering the temporality). Below the corresponding data, the left dataset shows the results of 
random selection, and the adjacent right dataset demonstrates the experimental results of nodes 
selected by the sampling method of important nodes. According to the two subgraphs on the left 
and right, the sampling strategy of important nodes can train the neutral network in a shorter time 
within tolerant errors (smaller than 2% in this test). 

Table 4  Accuracy of node classification (%) 

Problem 
      Dataset 
Algorithm 

Without considering temporality Considering temporality 

D0 D1 D2 D3 D0 D1 D2 D3 

Basic 47.8 53.1 53.8 52.3 47.4 53.7 54.9 53.1 
Deepwalk 49.7 55.6 57.6 56.6 48.2 54.3 55.8 54.3 
Node2vec 50.2 55.9 57.9 56.4 48.6 54.5 56.5 55.2 
CTDNE 48.6 54.3 55.7 54.7 49.2 54.9 54.9 53.8 
ATGEB 50.4 54.8 56.3 56.2 51.1 55.8 58.6 57.6 

7 Related work 

Different from static graphs, the edges in temporal graphs have two states which can be 
transformable to each other: active and inactive. The vertices in temporal graphs are connected 
only when the edges are active. There are many examples of temporal networks in practice: 

(1) Communication networks: E-mails, phone calls, and short messages are typical 
point-to-point temporal networks; 

(2) One-to-many information transformation networks: They are characterized by a single 
user propagating information to many other users; 

(3) Bioinformatic networks: These include brain neutron networks, metabolic networks, 
and protein-protein interaction networks. 

In the database field, the current research on temporal graphs mainly focuses on reachability 
queries, shortest temporal paths, and prediction of arrival time. 

The proposal of the DeepWalk [2] algorithm has brought attention to graph node embedding. 
The DeepWalk algorithm pioneers the combination of the random walk strategy of graphs and the 
skip-gram [3] model in natural language processing, which encodes words to vectors. The 
DeepWalk algorithm encodes graph nodes to vectors by this innovative method. With the 
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DeepWalk algorithm, researchers [4–7] tried to further improve this method by a biased sampling 
method, thus designing different node embedding strategies such as node2vec, LINE, PTE, and 
stru2vec. Although scholars claimed that these algorithms achieved better experimental results in 
link prediction and node classification, they made no essential improvement to the DeepWalk 
algorithm. In addition, different sampling strategies sometimes show significant distinctive 
performances on different datasets. This provides inspiration for subsequent researchers to study 
the node embedding problem. Specifically, with the current limited training ability for neutral 
networks, the study of vector representation of graph node embedding should focus on specific 
problems and topological characteristics of graph data. For example, it is different to perform node 
embedding on heterogeneous graphs from that on knowledge graphs. To solve different problems 
such as node classification and product recommendation, we need to propose research strategies 
that satisfy the specific requirements.  

Community detection [28,34,35] is always a hotspot research in graph data mining. At the initial 
stage, researchers focused on gathering users with close topological distance to form a community. 
However, as the problem was further studied with some practical applications, researchers 
preferred to call up users with the same interest to form a community based on a common interest. 
In this community, users usually have common interests or similar attributes. This allows 
enterprises to more accurately recommend information or products to users in light of the interests. 

8 Prospect 

With attention given to node embedding of temporal graphs without attributes, we develop 
some tests and confirm the proposed algorithm is effective and expandable from different 
perspectives. As graph convolution cannot be used in representation learning for nodes in temporal 
graphs without attributes, the embedding strategy in this paper cannot encode the node attributes to 
vectors. The following problems will be studied in the subsequent work. (1) The node 
representation on attribute-based temporal graphs will be studied. We try to study the connection 
between the node attribute and the temporal relationship of nodes with the existing graph 
convolution method, so as to propose a graph representation learning strategy which can conduct 
convolution for attributed temporal graphs. (2) This paper has conducted the sampling of 
important nodes for graphs. In the subsequent work, we will consider more for sample nodes. Both 
node topology and the attribute relationship between nodes will be considered. We will use related 
mining algorithms of graphs to select the important nodes, and try to make the vectors of the 
selected nodes more representative and unified, so that the required weight parameters in the 
neutral network can be trained better and faster. 
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