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Abstract  Knowledge graph is an important cornerstone of artificial intelligence, which 
currently has two main data models: RDF graph and property graph. There are several query 
languages on these two data models. The query language on RDF graph is SPARQL, and the query 
language on property graph is mainly Cypher. Over the last decade, various communities have 
developed different data management methods for RDF graphs and property graphs. Inconsistent 
data models and query languages hinder the wider application of knowledge graphs. KGDB is a 
knowledge graph database system with unified data model and query language. (1) Based on the 
relational model, a unified storage scheme is proposed, which supports the efficient storage of 
RDF graphs and property graphs, and meets the requirement of knowledge graph data storage and 
query load. (2) Using the clustering method based on characteristic sets, KGDB can handle the 
issue of untyped triple storage. (3) It realizes the interoperability of SPARQL and Cypher, which 
are two different knowledge graph query languages, and enables them to operate on the same 
knowledge graph. The extensive experiments on real-world datasets and synthetic datasets are 
carried out. The experimental results show that, compared with the existing knowledge graph 
database management systems, KGDB can not only provide more efficient storage management, 
but also has higher query efficiency. KGDB saves 30% of the storage space on average compared 
with gStore and Neo4j. The experimental results on basic graph pattern matching query show that, 
for the real-world dataset, the query efficiency of KGDB is generally higher than that of gStore 
and Neo4j, and can be improved by at most two orders of magnitude. 
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As an important cornerstone of artificial intelligence (AI), knowledge graphs play a role in 
the transition of new-generation AI from perception to cognition [1]. There are two major data 
models of knowledge graphs: resource description framework (RDF) graphs and property graphs. 
RDF is a standard recommended by World Wide Web Consortium (W3C) for expressing 
knowledge graphs, which has been widely adopted by triple databases represented by gStore [2]. 
Property graphs are serving as the underlying data models of graph databases such as Neo4j [3], 
Dgraph [4], and HugeGraph [5]. 

The development of relational databases over decades of years shows that unified data model 
and query language is the key to the advancement in data management technology. With regard to 
the inconsistent data models, storage schemes, and query languages in the management of 
knowledge graph databases, we develop a knowledge graph database (KGDB) system with a 
unified data model and query language. 

The unified storage scheme allows KGDB to store RDF graphs and property graphs in 
partitions according to the types of entities. Characteristic set (CS)-based clustering is used to 
classify untypedentities into ones that are semantically similar. Query interfaces of RDF graphs 
and property graphs are provided for SPARQL and Cypher to operate on the same knowledge 
graph, realizing their interoperability. KGDB follows a technical route of “unified 
storage–compatible grammar–unified semantics.” In underlying storage, a unified storage scheme 
is used for processing two data models of knowledge graphs; in query expression, two 
grammatically different query languages meant for different data models of knowledge graphs are 
compatible; in addition, the grammatically different query languages are aligned into the unified 
semantics, enabling the same query processing method. 

The overall architecture of KGDB is shown in Figure 1, in a bottom-up way. 
(1)  In the user input layer, data about RDF graphs and property graphs can be input; 
(2)  In system processing, there are two steps. First, data can be transformed into relational 

tables where they are clustered by types in terms of the unified storage scheme, based 
on which the raw knowledge graph data are stored. Second, two query languages are 
allowed to operate on the same knowledge graph in query processing; 

(3)  In the user interface layer, the basic graph pattern matching query results can be seen in 
standard format. 
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Figure 1.  Architecture of KGDB 

Given the diverse data models of existing knowledge graph database management systems, 
different storage schemes are proposed. On the one hand, there are three categories of schemes for 
the storage of RDF graphs. First, they can be stored by triples such as triple tables and horizontal 
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tables. Second, they can be stored by their data types, including property tables, vertical 
partitioning[6], sextuple indexing, and DB2RDF[7]. Third, they can be classified and stored by 
semantic information, such as characteristic sets (CSs)[8], extended characteristic sets (ECSs)[9], 
and R-type[10]. On the other hand, native schemes are often adopted for property graph storage, 
including Neo4j, JanusGraph[11], and TigerGraph[12]. 

Fundamentally, knowledge graph data are different from relational data because they are 
flexible, which poses new challenges for conventional storage and query processing. A CS-based 
clustering method is proposed, so that entities are clustered by types in terms of predicate groups, 
and untyped entities are also clustered by relational characteristics, realizing the unified storage of 
knowledge graphs. 

Due to different data models of existing knowledge graph database management systems, 
their query processing is completed with different languages: SPARQL on RDF graphs and Cypher 
on property graphs. The difference in grammar hinders their interoperability in a unified storage 
scheme. For this reason, SPARQL and Cypher are semantically aligned to operate on the same 
knowledge graphs without distinguishing underlying data models.  

Extensive experiments on real-world datasets and synthetic datasets reveal that KGDB is 
more efficient than gStore (RDF graph database) and Neo4j (property graph database) in the 
storage management and query processing of knowledge graphs.  

In this paper, our contributions can be summarized as follows: 
(1) We propose a unified storage scheme for knowledge graphs based on relational models 

that clusters data by types, realizing the efficient storage of RDF graphs and property 
graphs; the dictionary encoding method is used to compress storage space, catering to 
the smooth storage and query of knowledge graph data. 

(2) We propose CS-based clustering, with which untype entities are also clustered into data 
with similar predicate groups for their storage; thus, the unified storage scheme can be 
applied to flexible and variable semi-structured data. 

(3) SPARQL and Cypher are compatible in our KGDB, which allows the interoperation 
through semantic alignment, so they can operate on the same knowledge graph. 

(4) Extensive experiments on real-world datasets and synthetic datasets are carried out, 
revealing that KGDB is validated as it is more efficient than gStore and Neo4jin the 
storage management and query processing of knowledge graphs. 

We introduce the related work in Section 1 and propaedeutics in Section 2, describe the 
unified storage scheme of RDF graphs and property graphs in KGDB in Section 3, explain the way 
to the interoperation between query languages in Section 4, show the extensive experimental 
results in Section 5, and make a conclusion in Section 6.  

1 Related Work 

Storage schemes and query processing ways are emerging with the advancement in 
knowledge graphs. In this section, the storage schemes and query processing methods of two 
existing data models of knowledge graphs will be introduced. The increasing scale of knowledge 
graph data makes further requirements for storage and query, so distributed knowledge graph 
database management systems attract wide academic attention [13,14]. 

1.1 Storage schemes of knowledge graphs 

1.1.1 RDF graph 

(1) Storage directly by RDF triple features 
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Triple tables store data into a three-column table, represented by 3store [15]. Horizontal tables 
store all the predicates and objects corresponding to a subject in a row, which are adopted by the 
DLDB system [16]. Property tables, employed by Jena [17], store subjects of the same type in one 
table. Vertical partitioning establishes two-column tables for each predicates to store the subjects 
and objects connected by it, which is applied to SW-Store [18] and TripleBit[19]. Sextuple indexing 
sacrifices storage space to speed up query processing by storing all the six permutations of triples 
and create indexes on the first column, used by RDF-3X [20] and Hexastore[21]. Instead of binding a 
column with a certain predicate, DB2RDF [7] dynamically maps the predicates into columns 
through hashing and handles multi-value predicates with extra tables, which is systematically 
adopted by DB2RDF. 

Such schemes are intuitive and simple but faced with sparsity and null values. Moreover, a 
subject may correspond to several predicates, leading to more diverse predicates connected to 
different subjects than our expectation. Also, subjects of the same type may correspond to so quite 
different predicates that they cannot be neglected. In these schemes, there can be many null values 
in the relational tables that are so sparse and seriously affect storage. 

(2) Storage by RDF semantics 
CS-based storage scheme[8], adopted by the RDF-3X system [20],divides RDF graph data by 

star patterns. Entities with the same predicate groups are clustered, largely reducing the number of 
tables. However, this method equally processes all the predicates and may cluster most entities into 
one type, leading to poor division. ECS-based storage [9] conducts muti-layered division by star 
patterns and generates second-level indexes, speeding up query, but this approach also divides too 
many entities into one set. Ontologies are introduced into the R-Type [10]models, employed by 
SemStorm[22] to divide triples by predicates into inferable and non-inferable ones. Inferable triples 
in star patterns are not stored physically to save space. Star patterns with inferable triples are 
mapped directly into right patterns to accelerate the query. Nevertheless, R-Type models cannot 
divide untyped entities. 

Although these methods are more accurate and can optimize storage with semantic 
information, few relational storage schemes are developed and most of the existing ones have only 
prototypes, which are far from application. Relational databases are now stable in the research on 
transaction management and scalability, so more support is available using relational storage 
schemes. 

1.1.2 Property graph 

(1) Relational storage scheme 
SQLGraph[23] stores property graphs based on relation tables and JSON key values in a 

relational scheme. It hashes every edge label into two-column relation table and stores adjacency 
lists of the edges in that table: edge labels in one column and corresponding values in the other. 
AgensGraph[24] is amulti-model graph database based on the relational model. It separately stores 
vertices and edges of property graphs in relation tables by labels, and records their attribute values 
in the format of JSON. 

Considering the semi-structured data, the relational scheme is not flexible enough for the 
storage of property graphs. The cost is not acceptable to change the structure of relational tables 
once they are created. A more flexible and more efficient scheme is needed to store billions of 
vertex and edge data of knowledge graphs. 

(2) Document-based storage scheme 
MongoDB [25] is a database system with document-based storage scheme. It provides Web 

applications with scalable high-performance data storage alternative and stores data as a document. 
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The data structure is composed of key-value pairs and supports nested objects. In Neo4j, each data 
record, or node, stores direct pointers to all the nodes it’s connected to, does not need extra 
relational databases or NoSQL databases. It stores property graph data in the native graph database 
for various query demands. 

The document-based storage scheme is often applied in distributed environments which have 
stricter requirements for data storage than standalone environments. The storage efficiency of this 
scheme fails to meet the requirements for the storage and query of increasing larger-scale property 
graphs. Current storage schemes are mostly intended for certain knowledge graphs and are not 
ready for wider application. For this reason, it is necessary to develop a unified and efficient 
relational storage scheme for the two mainstream data models of knowledge graphs. 

1.2 Query processing of knowledge graphs 

1.2.1 RDF graph  

Blazegraph[26] is a graph database management system based on anRDF triple base, 
whichapplys to RDF triples and SPARQL queries. Jena [17] is the open-source framework and RDF 
triple based in semantic Web. It follows the W3C standard, supports the query processing with 
SPARQL, and includes a set of rule-based inference engines for RDFS and OWL ontology 
inference tasks. gStore [2] uses signature graphs corresponding to RDF graphs, creates VS-tree 
indexes, and allows the query processing with SPARQL. Virtuso[27] is a hybrid database 
management system that well supports the Linked Data protocols of W3C. RDF4J [28], evolving 
from Seasame framework developed by Aduna, supports SPARQL 1.1 and allows the analysis, 
storage, inference, and query of RDF data. RDF-3X [29]specifically establishes a compression 
storage scheme and a technique for the query processing and query optimization of RDF data. The 
AllegroGraph system [30] completely supports semantic inference. GraphDB[31] includes the SAIL 
layer of the RDF4J framework and supports RDF inference through the built-in rule-based 
“forward-chaining” inference engine. 

1.2.2 Property graph data 

Neo4j [3], a property graph database system, is the most widely adopted graph database and 
supports Cypher. AgensGraph[24] stores property graphs based on relational models and establishes 
the Cypher processing layer based on PostgreSQL. JanusGraph[11] is an open-source distributed 
graph database with separated storage backend and query engine. It includes a MapReduce-based 
graph analysis engine and can transform Gremlin navigation queries into MapReduce tasks. 
OirentDB[33] is designed for the storage of graph and document data and supports SQL and 
Gremlin navigation queries for graphs and the MATCH statement similar to Cypher. Cypher for 
Apache Spark[34] offers Cypher engine based on Spark framework. 

The two data models now have their respective query languages, grammar, and semantics. 
Although several optimization methods are proposed on specific systems, they still hinder the 
proliferation of knowledge graph query. Therefore, it is essential to develop a semantically 
interoprable system that supports both SPARQL and Cypher. 

2 Preliminary Knowledge 

In this section, the detailed background knowledge will be introduced, including the 
definitions of RDF graphs and property graphs. Table 1 lists major notations and their meanings. 
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Table 1  List of symbols 

Symbol Meaning Symbol Meaning 
G = (V, E, Σ) RDF graph G ϕ(t) Triple classification 

G = (V, E, η, src, 
tgt, λ, γ) Property graph G IC(s) CS of entities 

t = (s, p, o) Triple hist(C) Statistics of entity clusters 

α = (a, Lab, Map) Property graph vertex 
pattern 

DCScluster (Cj, 
Ck) 

Distance from Cj to Ck 

β = (d, Lab, a, 
Map) 

Property graph edge 
pattern λ:(V ∪ E)→ Mapping from vertexes and edges of property 

graphs onto labels  

T Finite set of triples 
γ:(V ∪ E) × 
→Val Mapping from property onto values 

µ Matching lab:E→Σ Acquisition of edge labels from RDF graphs 

Definition 1 (RDF graph). Let U be the finite set of uniform resource identifiers, L be the 
finite set of liberals, B be the finite set of blank nodes, and we have t=(s,p,o)∈U×U×(U∪L∪B) that 
is the RDF triple (neglecting the blank nodes). t=(s,p,o) means that resource s has a relation p with 
resource o, namely that resource s has a property p value of o where s, p, and o are subject, 
predicate, and object, respectively. RDF graph G is the finite set of t. V,E, and Σdenote sets of 
vertexes, edges, and labels, respectively, with a formalized definition of V={s|(s,p,o)∈G}∪ 
{o|(s,p,o)∈G},E⊆V×V and Σ={p|(s,p,o)∈G}. Function lab:E→Σ returns edge labels in G.  

Example 1: As shown in Figure 2, the RDF graph depicts a musical knowledge graph 
containing such resources as Beethoven (Composer), Lang Lang (Pianist), and Fate Symphony 
(Music) with several attributes of the entities and relationships such as composes and plays. 
Ellipsesre present resources, while rectangles stand for literals in the graph. Directed line 
connecting vertexes show the relationships between vertexes that starts from the subject, passes 
the edge label, namely predicate, and ends up with the object. The built-in predicate rdf:typerefters 
to the type of property. For example, the triple (Beethoven,rdf:type,Composer) demonstrates that 
Beethoven is a composer. 

Definition 2 (Property graph). For a property graph G=(V,E,η,src,tgt,λ,γ), V is the finite set 
of vertexes; Eis the finite set of edges with V∩E=∅; function η:E→(V×V) shows the mapping 
from an edge onto an vertex pair. For example, η(e)=(v1,v2) shows the directed edge e from v1 to v2. 
Function src:E→V denotes the mapping from an edge onto the starting vertex(src(e)=v shows that 
edge e starts from vertex v). Function tgt:E→V means the mapping from edge e onto the end 
vertex (tgt(e)=v shows that edge e ends up with vertex v). Function λ:(V∪E)→ is the mapping 
from vertexes or edges onto labels (where  is the set of labels), such as for v∈V(or e∈E), 
ifλ(v)=l(or λ(e)=l), l is the label of vertex v (or edge e). Function γ:(V∪E)×→Val denotes the 
associated attributes of vertexes or edges, where  is the set of attributes and Val is the set of 
values, such as for v∈V(or e∈E),property∈, ifγ(v,property)=val(orγ(e,property)=val), then the 
property of vertex v (or edge e) is val. 

 
Figure 2.  RDF graph 
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Example 2: Figure 3 shows the property graph of Figure 2, where every vertex and every 
edge have a unique integer identifier, namely id (such as v1 and e1). Every vertex and every edge 
can be given a label (v1 has a label Composer) and a attribute composed of attribute key and 
attribute value (for example v1 has an attribute that name=“Beethoven”). 

 
Figure 3.  Property graph 

3 Storage Scheme for Knowledge Graphs 

In this section, we will explain our unified storage scheme for knowledge graphs, which can 
uninterruptedly accommodate both RDF graphs and property graphs based on the relational 
models. Meanwhile, the Characteristic sets-based clustering algorithm is adopted to process the 
untyped data for better supporting the storage of knowledge graph data. 

3.1 Storage models for knowledge graphs 
The unified scheme stores each entity into its corresponding vertex relation tables vn (n∈[1,i]) 

and stores each relation into its corresponding edge relation tables em(m∈[1,j]), where i and j show 
the number of vertex and edge types. Relation tables are named after the types of entities or 
relations. The relation vertex relations consist of two columns, that is, id (primary key) and 
property (including attribute and the corresponding value of the attribute); the relation edge 
relations consist of four columns, that is, id (primary key), start (start vertex of edges), end (end 
vertex of edges), and  property of edge (including attribute and the corresponding value of the 
attribute). Vertex and edge relations tables are further divided according to the types of entities and 
relations, avoiding the poor accessibility caused by the excessive data in a single relation table. 

3.1.1 Mapping from the RDF graph to unified storage model 

There are three types of triples in RDF graph data, which are defined below. 
Definition 3 (Triple classification).Let C be the set of classes of triples. C={mem,prop,edge} 

denotes the types of triples, namely type member triples, property description triples, and edge 
triples. Function ϕ:T→C is the mapping from a triple onto its type. 

 
,   when { ( , , ) | ( , , ) rdf:ty

when
pe}

( ) ,  { ( , , ) | ( , , ) }
,   { ( , , ) | ( , , ) rdfwhen :type}

mem t t s p o s p o T p
t prop t s p o s p o T o L

edge t s p o s p o
t

T pt
ϕ

∈ = ∈ ∧ =
= ∈ = ∈ ∧ ∈
 ∈ = ∈ ∧ ≠

 

 

         (1) 

According to Definition 3, the example RDF graph shown in Fig. 2 describes a music RDF 

graph where ϕ((Beethoven,rdf:type,Composer))=mem,ϕ((Beethoven,birthDate,1770-12-16))=prop, 

and ϕ((Lang Lang,plays,Fate Symphony))=edge. 

The vertex relations and edge relations of RDF graph should be created in terms of labels of 

vertice and edges in graph G. Entities and relations can be shreded into vertex relations and edge 

relations through Rules 1–3. 

name=“Beethoven”
birthDate=1770-12-16

v1:Composer

name=“Fate Symthony”

v2:Music
name=“Lang Lang”
birthDate=1982-6-14

v3:Pianist

name=“Richard Claydeman”

v4:Pianist

e1:composes

e2:plays

e3:plays
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Rule 1. For any t=(s,p,o), if ϕ(t)=mem, a record with an id of s is inserted into the vertex 
relation o. 

Rule 2. For any given t=(s,p,o), if ϕ(t)=prop, p and o are inserted into the column “property” 
corresponding to entity s as a key-value pair. 

Rule 3. For any given t=(s,p,o), if ϕ(t)=edge, a record starting from s and ending up with o is 
inserted into edge relation p. 

3.1.2 Mapping from the property graph to unified storage model 

With the built-in support for property of vertexes and edges, property graphs can be easily 
mapped to the unified storage model depending on Rules 4 and 5. 

Rule 4. A unique id is assigned to entity v and a record with id is inserted into edge relation 
λ(v)(λ(v) is the label of entity v). The key-value pairs representing the vertex attributes will be 
inserted into the second column of relation λ(v).” 

Rule 5. A unique id is assigned to relation e according to its edge label λ(e) in the property 
graph and a record with id is inserted into edge relationλ(e). The key-value pairs representing the 
edge attributes will be inserted into the last column of relation λ(e); the id of v1will be kept into the 
column “start”; the id of v2will be kept into the column “end” (η(e)=(v1,v2)∧src(e)=v1∧tgt(e)=v2). 

In property graphs, an id in the vertex relation is just an identifier without actual meaning, 
while that in RDF graphs corresponds to an actual URI (with actual meaning). For unified 
expression, the URI of v, namely vuri, is added into the second column “property” in the vertex 
relations as a new attribute, i.e., γ(v,uri)=vuri. 

Example 3: According to the above rules, the examples in Figures 2 and 3 can be 
transformed into a unified relation-based storage scheme, as shown in Figure 4. Entities are stored 
into vertex relations in terms of their types (Composer, Pianist, and Music), and the relations can 
be stored into edge relations in accordance with their types (composes and plays). Arrows 
demonstrate foreign-key relations. 

 
Figure 4.  Unified storage scheme for knowledge graphs 

Knowledge graph data are stored with this unified storage scheme according to types of 
entities and relations. Edge property is not included in Figure4, so the column “property” is null in 
the corresponding table. The type information of entities and relations is supported by labels in 
property graphs and the built-in keyword rdf:type in RDF graphs. It is reasonable to divide vertices 
and edges for storage management in terms of their types and reduce the data redundancy and 
sparsity of existing schemes. 

After the establishment of relational tables, functions of relational tables will be given to 
every operation with the table names as objects. The relational table set of storage scheme is 
R={r1,r2,…,rn}, and its corresponding name set is X={x1,x2,…,xm}; Function name:R→X returns 
the name of a relational table; Function rel:T→R returns the relational table of an entity t, where T 
is the set of entities and t∈T. 

More than one relation may exist between two entities, namely multiple properties. With the 
storage scheme mentioned in Section 3.1, KGDB is used to store several attribute key-value pairs 

id start end property

plays#1 Richard Clayderman Fate Symphony

plays#2 Lang Lang Fate Symphony

Beethoven

id property

birthDate:1770-12-16

Composer

plays

id property

Fate Symphony

Music

id property

Richard Clayderman

Lang Lang birthDate:1982-6-14

Pianist

id start end property

composes Beethoven Fate Symphony

composes

 
 



Liu BZ, et al. KGDB: Knowledge graph database system with unified model and query language       103 

for a single subject. Most existing storage schemes map URIs or literals to integer identifier 
through dictionary encoding. In other words, the mapping technique effectively realizes the 
conversion from string to id, and reduces the space overhead of database to the minimum. KGDB 
adopts the dictionary encoding method similar to most existing methods, and compresses the space 
resources required by the storage schemes. 

3.2 Optimum storage scheme for untyped entities 
In the unified storage model introduced above, knowledge graph data are divided by vertex 

and edge types and stored in the corresponding tables of vertexes and edges, neglecting the storage 
of untyped entities. Basically, all untyped entities are equally stored in a single relation table. Such 
method may lead to oversized relation tables when dealing with datasets with a large number of 
untyped entities, reducing the efficiency of queries. Meanwhile, untyped entities are not connected 
without semantic information, which is opposite to the assumption that semantically equal or 
similar entities should be stored in close space. 

Untyped entities are divided into the closest type by the CS-based clustering algorithm. The 
hierarchical clustering algorithm can give the similarity between nodes according to a certain 
distance function and merge the nodes step by step depending on the similarity. When the certain 
condition is reached, the merging will be terminated. In this section, the CS and CS distance of 
entities will be defined to measure the similarity between entities to help store untyped entities. 

3.2.1 CS of entities 

In RDF graphs, several triples are used to describe the characteristics of an entity. The CS [8] 
can be defined as the name set of edges starting from the entity vertex, which will be introduced in 
detail. 

Definition 4 (Characteristic set of entities). The characteristic set I of entity s in the 
knowledge graph dataset D is 

 IC(s) = {p|∃o:(s, p, o) ∈ D}                         (2) 

Example 4: In an RDF dataset, there are 3 triples that describe entity s1, the novel The Old 
Man and the Sea, i.e., (s1, title, “The Old Man and the Sea”), (s1, author, Hemingway), and (s1, 
year, “1951”). The CS of s1 is IC(s1) = {title, author, year}. 

3.2.2 Entity cluster and distance 

Cluster C contains several entities. To better express the property characteristics of all the 
entities in a cluster, for any given cluster with some entities, we define hist(C) that demonstrates 
the statistics of CSs of entities in this cluster and records the number of property m of all entities. 
hist(C) can be defined as the set of key-value pairs of every property and its count: 

 
1

( ) ( , )i i
m

i
hist C property count

=
=


                       (3) 

where propertyi is property i; counti is the count of property i in cluster C. hist(C) can then be used 
to define the distance between two clusters containing some entities. The distance between Cj and 
Ck can be expressed by the distance between their statistics of entities: 
 

1,.cluster . ,{ }.
( , ) ( ( ), ( )) ( ( , ) ( , ))

ni
hist ipj k j k j i k ip p

DCS C C DCS hist C hist C count C p count C p b
∈

= = +∑      (4) 

where 
• n is the total number of properties in the two clusters; 
• bi denotes whether property i exists simultaneously in the two clusters, if so, bi = 0; or else 

bi = 1; 
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• count(Cj,pi) and count(Ck,pi) are the counts of pi in Cj and Ck, respectively. 
In view of Formula (4), the distance between two clusters are the sum of counts of all the 

property that does not exist simultaneously in the two clusters. The counts of properties implies the 
importance to the cluster. For example, the properties of authors and titles in entities with the type 
of book have high counts. In this way, the similarity between two clusters can be measured. 

3.2.3 CS-based entity clustering algorithm 

The definitions of entity-based CSs, statistics of CSs of clusters containing several entities, 
and the cluster distance can be used for the optimization of the unified storage scheme. With the 
hierarchical clustering, an entity cluster algorithm is proposed based on entity types, which can 
divide a untyped entity into a known type by clustering. 

For entity s∈S, S is the set of entities; Function haveType:S→{TRUE,FALSE} returns 
whether an entity is typed or not. If s is typed, the return is TRUE; otherwise it is FALSE. Function 
getType:S→TYPE returns the type of an entity where TYPE is the set of entity types. 

We need to calculate distances between clusters and find the closest ones for merging. For the 
set of entity clusters C={C1,C2,…,Cn}, Function findMin(C) calculates distances between every 
two clusters and gives the indices of the closest ones. 

Every entity is considered as a cluster, and clusters are merged in a bottom-up manner 
according to the similarity between CS of entities. The ones with entities totally different in types 
should not be merged. 

Algorithm 1 realizes the CS-based entity clustering, which can divide entities into clusters by 
their types. The entities in a cluster have similar property, that is, the entities in each cluster tend to 
have the same type. Algorithm 1 first merges entities of the same type into a cluster, and regards 
every untyped entity as a single cluster (rows 2–8). Clusters are then merged according to cluster 
distance DCScluster in a bottom-up manner. It finds out the closest Ci and Cj(DCScluster(Ci,Cj) is the 
lowest) from the known cluster set C and requires that the two are neither typed clusters (rows 
10–12). Then, it merges the two clusters, assigns the known type Ci to the merged cluster, and 
updates hist(Ci) (rows 14–15). It repeats merging until there are no clusters to be merged. Clusters 
with untyped entities are merged into those with typed entities by entity clustering, and entities in a 
cluster are of the same type. 

Algorithm 1. Clustering of typeless entities of triples 

Input: Entity set S; 
Output: Set of entity clusters C. 

1.  for each s∈S do 
2.    if haveType(s) then 
3.      τ←getType(s);  //add entity s to the cluster with type-τ entities 
4.      Cτ←Cτ∪{s}; 
5.      C←C∪{Cτ}; 
6.    else 
7.      C0←C0∪{s};  //add every untyped entity as a cluster to C 
8.      C←C∪{C0}; 
9.  end 
10.  while |C|>1 do 
11.   i,j←findMin(C);  //obtain the indices of the two different closest clusters 
12.   if i=0∧j=0 then  // find no suitable clusters 
13.     break; 
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14.   Ci←Ci∪Cj;   //merge Ci and Cj 
15.   C←C\Cj; 
16.  end 

Example 5: The clustering process is elaborated. 

At the beginning, s1 and s2 with rdf:type of books are merged into C1 where 

• IC(s1) = {title, author, year}; 

• IC(s2) = {author, year}; 

• hist(C1) = {(title,1), (author, 2), (year, 2)}. 

s3 and s4 with rdf:type of movies are merged into C2 where 

• IC(s3) = {title, director, year}; 

• IC(s4) = {director, year}; 

• hist(C2) = {(title, 1), (director, 2), (year, 2)}. 

Finally, s5 without rdf:type is taken as C3: 

• IC(s5) = {title, director}; 

• hist(C3) = {(director, 1)}. 
Then, we have DCScenter(C1, C3) = 6 and DCScenter(C2, C3) = 3. 
C3 is closer to C2 than to C1 in view of entity types, so it is merged into C2. Specifically, 

s5isstored in the vertex table of the type “movie” according to our scheme. 
Definition 5 (Set of optimal entity clusters). For the set of optimal entity clusters C, (1) all 

the clusters in C contain typed entities and two clusters have no entity of the same type;(2)the 
closest distance entities of all the entities in C are contained in the clusters with corresponding 
entities. 

The correctness and complexity of Algorithm 1 are confirmed as below. 
Theorem 1. For any given set of entities S, Algorithm 1 can give the set of optimal entity 

clusters C. 
Proof: Algorithm 1 first classifies data in the dataset according to their characteristics. Typed 

data are classified into the cluster with type-τ entities i.e., Cτ, which is then merged into the set of 
entity clusters C. If s is untyped, it is classified into a cluster C0 for processing untyped entities. 
Thus, (1) in Definition 5 can be satisfied because every entity has been classified into a cluster 
after the first round of iteration. During every subsequent round of iteration, the distance between 
every two clusters are calculated, i.e., DCScluster(C1,C2). If Ci and Cj (i≠j) with the minimum 
distance can be found out, they are merged; or else the clustering is terminated. Subsequent 
iteration ensures (2) in Definition 5 and can get the set of optimal entity clusters C.  Q.E.D. 

The time complexity of Algorithm 1 results from (1) e iterations and (2) comparison between 
cluster distances. Under the worst circumstance, every entity forms a single cluster, and the 
complexity of cluster distance is O(s2). Therefore, the time complexity of Algorithm 1 is O(es2). 

4 Interopration Between Query Languages 

SPARQL on RDF graphs are grammatically different from Cypher on property graphs. The 
query based on the unified storage scheme introduced in Section 3 can be realized by both 
SPARQL and Cypher on KGDB, achieving the interopration between query languages. In 
References [35] and [36], formal semantics of RDF and Cypher are given. The KGDB regards 
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SPARQL and Cypher as two different grammatical views with unified query semantics. Relational 
models are used as physical models to store both RDF graphs and property graphs. Meanwhile, the 
two query languages are semantically aligned. 

The query of basic graph pattern(BGP) matching is the basic operator for the query 
processing of knowledge graphs, which is fundamentally subgraph homomorphism or subgraph 
isomorphism. Subgraph matching serves as the core operator of most existing knowledge graph 
query languages. Although there are many query algorithms for subgraph matching of graph data, 
a systematic and effective one for large-scale knowledge graphs is lacking. KGDB, that queries 
subgraph matching based on SPARQL and Cypher, needs to align the two languages and 
transforms a query intention into two expressions, assuring the correctness and efficiency of query 
processing. 

In this section, typical operators in relational algebra, including ρ(rename),π(project), 
σ(select),⋈(join),×(Cartesian product),∩(intersect), and ∪(unite), will be used. The join list  
shows abstract semantics. In ={r1,r2,…,rn}, r1,…,rn are the n relation tables in the join list. 
r→property denotes the property of all the triples in relation table r.  

4.1 SPARQL query processing 
First, the formalized definition of BGP matching in RDF graphs is given. 
Definition 6 (BGP matching on RDF graphs). The query of BGP matching on RDF graph G, 

i.e., Q, is semantically defined: 
(1) µ is the mapping of vertex in V(Q) onto that in V; 
(2) (G,µ)Q if and only if any (si,pi,oi) ∈ Q satisfies that: i) si and oi can be matched with 

µ(si) and µ(oi), ii) (µ(si),µ(oi)) ∈ E, and iii) lab(µ(si),µ(oi)) = pi; 
(3) Ω(Q) is the set that allows (G,µ)Q to satisfy µ, namely the answer set of BGP query GQ. 
Example 6: Figure5 shows the query of BGP matching Q containing triples t1=(Beethoven, 

composes,?music) and t2=(Beethoven,birthDate,“1770-12-16”). The two triples constitute a simple 
star structure for querying all the works of Beethoven. Q is operated on the RDF graph in Figure2, 
and the variable ?music can be matched with Fate Symphony and outputted if specified in the 
result clause. 

Composer PianistBeethovenrdf:type

“1770-12-16”

birthDate

composes
Fate Symphony

rdf:type

Music

plays

Richard 
Clayderman

Lang 
Lang

birthDate

“1982-6-14”

rdf:type

rdf:typeplays

Beethoven
composes

?music

Subgraph matching

“1770-12-16”

birthDate

 
Figure 5.  Query of BGP matching 

The simplest SPARQL query statement consists of the SELECT clause and the WHERE 
clause. KGDB semantically analyzes the grammar of SPARQL query statement and generates the 
semantic tree. In terms of the semantic meaning of every part of SPARQL query statement, a query 
semantic tree is created from bottom to up in the form of relational algebra, depending on Rules 
6–9. 
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Rule 6. For any triple t=(s,p,o) in the WHERE clause of SPARQL query, if ϕ(ti)=mem, a leaf 
node rs=ρs(r) is added to the bottom layer of the semantic tree where name(r)=o. Relation rs is thus 
added to the join list. 

Rule 7. For any triple t=(s,p,o) in the WHERE clause of SPARQL query, if ϕ(t)=prop with 
rs∈, we replace rs in  with the intersection between the original rsand the selection 
operationσr→p=o(r)(where rel(s)=r). 

Rule 8. For any triple t=(s,p,o) in the WHERE clause of SPARQL query, if ϕ(t)=edge and 
rs∈, we replacers with the one applied join operation sr ⋈ . .s pr id r start pr= ; if ro∈, we replace ro 
with the one applied join operation or ⋈

. .o pr id r end pr= ; if subject (object) is an URL, a selection 
operation . .( )( ( ))

p pr start s p r end s pr rσ σ= = is applied to the relation table rp corresponding to the 
predicate. 

Rule 9. For any variable var in SELECT clause, a projection operationπvar.id,var.property(rfinal) is 
applied, where rfinal is the final Cartesian product resultof all the relations in join list. 

SPARQL statement can be transformed into query semantic by Algorithm 2. 

Algorithm 2. SPARQL query processing of basic graph pattern matching 

Input: The set of triples 
11 2{ , , }, nT t t t=   where ti=(si,pi,oi); the set of variables

21 2{ , , , }nVAR var var var=  ; 
the set of relation tables

31 2{ , , }, nR r r r=  ; 
Output: The result rresult of the query of BGP matching 

1.  =∅; 
2.  rresult=∅; 
3.  for each ti∈T do 
4.  if ϕ(ti)=mem then //rename relation tableoiand add it to the join list 
5.  | ({ ( ) })

i i is s s ir r r R namer r oρ=← ∪ ∧ ∈ ∧ =  ; 
6. elseif ϕ(ti)=prop then  //add a selection operation 
7.  \ { }

is
r←  ; 

8.   ( ), ( ),
i i i irs p iosr r rr R rel s rσ → =← ∩ ∈ ∧ =where ; 

9.   { }
isr← ∪  ; 

10. else     //add a join operation 
11. if si∈U and iis a variable then   //thesubject is a constant and the object is a variable 
12. \ { }

ior←  ; 
13. 

i ioor r← ⋈ . . .( ( ))
pio p ir id r start r start s prσ= = ,where rp∈R∧name(rp)=pi; 

14.  { }
ior← ∪   

15. else if oi∈Uiand siis a varable then //the object is a constant and the subject is a variable 
16. \ { }

is
r←  ; 

17.
i is sr r← ⋈ . . .( ( ))

p ps iir id r start r end o prσ= = ,where rp∈R∧name(rp)=pi; 
18. { }

is
r← ∪   

19.  else   //the subject and the object are both variables 
20. { , }\

i is or r←  ; 
21.

i ioor r← ⋈ . .poir id r start pr= ,where rp∈R∧name(rp)=pi; 
22.

i is sr r← ⋈ . .psir id r start pr= ,where rp∈R∧name(rp)=pi; 
23. ,{ }

i is orr← ∪  ; 
24.  end 
25. for each vari∈Var do  //add a projection operation and output the results in the corresponding 

relation table 
26. . , . ( )

i iresult result var id var property finalr rr π← ∪ ; //rfinalis the final Cartesian product results of relation tables 
in  

27. end 
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Algorithm 2 transverses triples involved in SPARQL query and can take different measures to 
various triples, forming the query semantic expressed by relational algebra. Similar to the storage 
scheme, the query processing divides ti=(si,pi,oi) into three catagories: ϕ(ti)=mem that describes the 
type of an entity,ϕ(ti)=prop where the object is literal, and ϕ(ti)=edge (the other). For mem (line 4 
and 5), we add a relation table named after the object oi to the join list and rename the table as si 
(the other triples in SPARQL query are named after the same variable); for prop (line 6–9), we add 
a selection operation to the set of constraints; for other triples (namely edge in line 10–24), we add 
a join operation. In line 25 and 26, we process all the projection operations and output the final 
query result according to users’ demand. 

Theorem 2. The outputs of Algorithm 2 of the set of triples T and the set of relation tables R 
in the given SPARQ query are correct. 

Proof: Algorithm 2 transverses all the triples involved in SPARQL query and gives a 
corresponding solution according to the type of ti=(si,pi,oi)∈T. According to Definition 3, triples 
have only three semantic types. In other words, Algorithm 2 can work out a corresponding solution 
to every triple with a join list of the right relation table given. All the variables in the SELECT 
clause exist in the WHERE clause, and the addition of projection operation changes only the final 
results without affecting the correctness.      Q.E.D. 

The time complexity of Alogrithm 2 consists of two parts: (1) the algorithm needs to 
transverse all the triples in the SPARQL query and give corresponding solutions to generate the 
join list,which complexity is O(n); (2) the time complexity of adding a new entry to the join 
listis a constant O(k).Hence, the time complexity of Algorithm 2 is O(kn). 

4.2 Cypher query processing 
Similar to the SPARQL query processing method, we first give the formalizeddefinition of 

property graph pattern matching. 
Definition 7 (Property graph pattern). α=(a,Lab,Map)is a vertex pattern where a∈∪{nil}is 

an optional name;  is the set of names; nil is null; Lab is a possibly empty finite set of node 
labels (Lab⊆); is the label set of property graphs; Map is the possibly empty finite partial map 
fromto property value Val.β=(d,Lab,a,Map)is an edge pattern where d∈{←,→}is its direction; 
Lab is a possibly empty finite label set (Lab⊆);a∈∪{nil}is an optional name for edge patterns; 
Map is the possibly empty finite partial map fromof properties onto property value 
Val.ω=α1β1α2β2…βn1αn is a path pattern where αi is a vertex pattern and βi is an edge pattern. 

Definition 8 (Property graph pattern matching). The recursive definition of property graph 
pattern matching is as follows[36]. 

(1) For vertex pattern α=(a,Lab,Map), if the matching is (v,G,µ)αon property graph G, 
then a is nil or µ(a)=v,Lab⊆λ(v)and [[γ(v,k)=Map(k)]]G,µ; 

(2) For path  with only one vertex, namely m=0,if the matching is (v⋅,G,µ)αβωon 
property graph G, then 
a) a is nil or µ(a)=list(⋅); 
b) (v,G,µ)αand (,G,µ)ω; 

(3) For path  with m≥1,if the matching is (v1e1v2…emvm+1⋅,G,µ)αβω on property graph 
G, then 
a) a is nil or µ(a)=list(e1,…,em); 
b) (v1,G,µ)αand (,G,µ)ω; 

c) Labβ⊆{λ(e1)∪λ(e2)∪…∪λ(em)}; 
d) [ [γ(ei,k)=Map(k)] ]G,µ= true; 
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where  denotes bag union. 

Similar to SPARQL query statement, the simplest Cypher query includes the MATCH clause 

and the RETURN clause. In KGDB, Cypher statement is transformed by Rules 10–12. 
Rule 10. For all the vertex patterns α=(a,Lab,Map) in Cypher query statements, n relation 

tables, namely r1,…,rn, are added to the join list, where Lab⊆{rel(r1),rel(r2),…,rel(rn)}; selection 
operation )) (( ( ) [1, ],

i range Mar domain pp iMa r niσ → = ∈  is added, where domain(Map) is the domain of Map and 
range(Map) the range of Map. 

Rule 11. For all the edge patternsβ=(d,Lab,a,Map) in Cypher query statements, join operation 
is added to relation table in: 

1 1

1 1
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 

 

Rule 12. For all the variables var in Cypher query statements, projection operation 
πvar.id,var.property(rfinal) is added, whererfinal is the final Cartesian product result of the relation tables 
in . 

Compare the two query languages realized in KGDB, Cypher is easier in semantic 
transformation than SPARQL, since the latter needs to map triples onto relational algebra by the 
triple classification, while the former can directly identify the semantics by patterns of all the parts. 

Theorem 3. Rules 10–12 can be correctly transform Cypher query statements into query 
semantics in the form of relational algebra. 

Proof: In Cypher statements, MATCH clause is transformed by Rules 10 and 11, while 
RETURN clause is processed by Rule 12. Transformations are carried out for the vertex pattern 
and edge pattern in MATCH clause by Rules 10 and 11, respectively: (1)for labeled vertex pattern 
α=(a,Lab,Map), n relational tables, namely r1,…,rn, are added to the join list,where 
Lab⊆{rel(r1),rel(r2),…,rel(rn)}, and selection operation )) (( ( ) [1, ],

i range Mar domain pp iMa r niσ → = ∈  is added, 
where domain(Map) is the domain of Map and range(Map) the range of Map; (2) for labeled edge 
pattern β=(d,Lab,a,Map), two join operations are applied. All the variables in Rule 12 should be 
included in MATCH clause with projection operation πvar.id,var.property(rfinal) added, where rfinal is the 
final Cartesian product result of relation tables in join list . All the query matching can be solved 
in this way.    Q.E.D. 

Example 7: Figure 6 demonstrates a query of property graph pattern matching about all the 
works of Beethoven. This query can be executed on the property graph of Figure 3 and get the 
results in the dotted line. 

name=“Beethoven”
birthDate=1770-12-16

v1:Composer

name=“Fate Symthony”

v2:Music
name=“Lang Lang”
birthDate=1982-6-14

v3:Pianist

name=“Richard Claydeman”

v4:Pianist

e1:composes

e2:plays

e3:plays

name=“Beethoven”
x:Composer ycomposes

Graph pattern matching

 
Figure 6.  Cypher query of property graph pattern matching 
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4.3 Semantic alignment 
As shown in Figure 7, the semantic alignment between SPARQL and Cypher is carried out by 

KGDB.As the same semantics can be expressed with totally different grammars, the same query 
intention can be given in two different languages, which are then transformed into the same query 
semantics by the respective rules mentioned above. Thus, a unified semantic is available for 
subsequent query processing. 

JOIN

SELECTION

RENAME

MATCH (x:Composer
       {birthDate:"1770-12-16"}) 
       -[:composes]-> (y:music) 
RETURN x,y;

SELECT ?x,?y
WHERE {

?x rdf:type Composer.
?x birthDate  "1770-12-16".
?x composes ?y.
?y rdf:type Music

}

the composers and the musics he/she composed, the birthday of the composer is 1770-12-16

AND

1770 12 16x birthDateσ “ ”   

( )x Composerρ ( )y Musicρ

. .x id composes start . .y id composes end

. , . , . , . ( . )x id x property y id y property x yπ

 
 

 

 
Figure 7. Semantic alignment 

Two query language interfaces are offered on the unified storage scheme as more options for 
users. The semantic alignment is, in fact, the extension of the two languages. 

Example 8: Two transformation processes are shown for better understanding of Figure 7. 
(1) SPARQL query 
SPARQL query statements are transformed by the rules in Section 4.1: 

a) For triples t1=(?x,rdf:type,Composer) and t4=(?y,rdf:type,Music), we have ϕ(t1)=ϕ(t4)= mem 
according to Rule 6, so that two relation tables Composer and Music are added to the join list 
and renamed asρx(Composer) and ρy(Music), respectively; 

b) For triple t2=(?x,birthDate,“1770-12-16”),we have ϕ(t2)=prop according to Rule 7.Then we 
can add selection operationσx→birthDate=“1770-12-16”(x) to renamed table x; 

c) For triple t3=(?x,composes,?y),we have ϕ(t3)=edge according to Rule 8, thus, a join operation 
between relation tables is added: 

xr ⋈ . . ,
x composesr id r start composes yr r= ⋈ . .y composesr id r end composesr= ; 

d) For all the variables i.e., x and y in the RETURN clauses, we add projection operation 
πvar.id,var.property(rfinal) whererfinal is the final Cartesian product result of relation tables in , 
according to Rule 9. 
At this point, the SPARQL statement can be transformed into the semantic tree in Figure7. 
(2) Cypherquery 
Cypher query statements are transformed by rules in Section 4.2: 
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a) For vertex pattern α=({x,y},{Composer,Music},birthDate→“1770-12-16”),according to 
Rule 10, we can add relation tables Composer and Music to the join list, rename them 
as ρx(Composer) and ρy(Music), respectively, and add selection operation 
σx→birthDate=“1770-12-16”(x); 

b) For edge pattern β=(→,{composes},nil,{⋅}), according to Rule 11, we can add join 
operation 

. . . .,
x composes y composesx r id r start composes y r id r end composesr r r r= =  ; 

c) For all the variables i.e., x and y in RETURN clauses, we add projection operation 
πvar.id,var.property(rfinal) whererfinal is the final Cartesian product result of relation tablesin 
, according to Rule 12. 

According to the rules in Section 4, the SPARQL and Cypher statements can be transformed 
into the same abstract semantic tree expressed by relational algebra (alignment methods can be 
validated according to Theorems 2 and 3, respectively), leading to the unified query semantics for 
KGDB compatible with two grammatically different query languages. This facilitates subsequent 
optimization and provides users with another query language option. 

5 Experiment 

Extensive experiments are carried out on real-world and synthetic datasets to verify the high 
efficiency of the unified storage scheme and the interoperability between two languages. Moreover, 
KGDB is compared with gStore [2] and Neo4j [3], which will be explained in detail in this section. 

5.1 Experimental settings and datasets 
The experiment is deployed on a single-node server. The server has an 8-core Intel(R) 

Xeon(R) Platinum 8255C@ 2.5GHz CPU, with 32GB of memory, running 64-bit CentOS 7.6 
operating system. 

KGDB is implemented on the top of AgensGraph, an open-source graph database. 
Neo4j-community-4.1.0 and neosemantics-4.0.0.1 are used to store RDF graphs in Neo4j. The 
version of gStore used in the experimentsisgStore-0.7.2. The storage efficiency of KGDB, gStore, 
and Neo4j is compared. Furthermore, the query efficiency of KGDB on SPARQL BGP matching 
queries is compared with gStore, and that of Cypher graph pattern matching queries is compared 
with Neo4j. 

LUBM [37], a synthetic dataset, and DBpedia[38], a real-world dataset, are used in this paper. 
The size of LUBM can be defined by users. 5 LUBM datasets of various sizes are adopted, i.e., 
LUBM10, LUBM20, LUBM30, LUBM40, and LUBM50. DBpedia is a real-world dataset 
generated by the extracted entity relationships from Wikipedia. All the datasets are expressed by 
N-Triple. The statistical information of the datasets is shown in Table 2. 

Table 2 Datasets 
Dataset Number of triples Number of vertexes Number of edges Document size 

LUBM10 1316 700 207 429 630 757 208 M 
LUBM20 2782 126 437 558 1332 030 441 M 
LUBM30 4109 002 645 957 1967 309 651 M 
LUBM40 5495 742 864 225 2630 657 871 M 
LUBM50 6890 640 1082 821 3298 814 1.1 G 
DBpedia 23 445 441 2257 499 6876 041 3.1 G 

 
8 of the 14 standard queries (Q1–Q6, Q11, and Q14) provided by the LUBM are adopted in 

the experiments, where 
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• Q1–Q3and Q14are SPARQL queries without inference:(1)Q1bears large input and 
high selectivity; (2)Q2is a triangular query involving three entities;(3)Q3contains 
wide hierarchy class;(4)Q14includes large amount of input data and with low 
selectivity; 

• Q4–Q6 and Q11 involve inference. 
gStore does not support inference on RDF graphs and Neo4j only allows inference through a 

plug-in. Similarly, KGDB does not enable inference query. Hence, we only compare the inference 
query efficiency of gStore and KGDB that return null value. The inference queries of LUBMs can 
be divided into four types: (1) Q4–Q9 involve subClassOf relationship; (2) Q5 includes 
subPropertyOf relationship and cannot be executed without ontology information; (3) Q6–Q10 
includes explicit subClassOf relationship, i.e., the hierarchical relationships of entity types 
involved in query are not directly given in the ontology information; (4) Q11–Q13 need more 
complex inference, namely those relationship in addition to subClassOf and subPropertyOf should 
be considered. Every kind of queries is chosen one for the comparison. For a lack of benchmark 
queries on DBpedia, we design four queries with different data sizes, i.e., Q_dbp1–Q_dbp4. 
Q_dbp2–Q_dbp4 are structurally equal, of which Q_dbp4 retrieves the greatest amount of results 
(millions of results), while Q_dbp2 retrieves the lowest amount. 

5.2 Results 
In this section, a thorough experimental study is conducted to evaluate storage efficiency and 

query efficiency of KGDB. Every query is issued three times to get the average result. 

5.2.1 Storage time 

As shown in Figure8(a), KGDB spends the least storage time, followed by Neo4j, and gStore 
the most. With the increase in data size, KGDB can be 10 times faster than gStore and Neo4j in 
import time and improve the storage efficiency by an order of magnitude than gStore and Neo4j. 

 
 
 
 
 
 
 
 

 

Figure 8. Experimental results of storage time and space 

KGDB needs to cluster the untyped entities for once so that it can store datasets for many 
times without complex transformation. Compared with KGDB, gStore has to transform character 
strings into id and create VS-trees, whileNeo4j calls for transformation from types into labels. 

5.2.2 Storage space 

As shown in Figure8(b), KGDB outperforms gStore and Neo4j in storage space. Neo4j needs 
a storage space larger than, and even two times the size of dataset. gStore can compress datasets at 
a rate of up to 0.8 for storage. Compared with gStore and Neo4j, the compression rate of KGDB 
can reach 0.7, achieving efficient data storage. With the size of data increasing, KGDB prevails 
even greater in storage space, due to the utilizing of dictionary encoding. Users only can build only 
two databases in Neo4j-community, with a graph for each, so that a full backup of Neo4jis 
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required when creating more than one knowledge graphs. Although Neo4j-enterprise supports 
multiple databases, Neo4j-community provides users with limited services and calls for higher 
storage space for multiple independent knowledge graphs. 

In the experiments, we merely calculate and compare the storage space before and after 
knowledge graph on loading. The space needed by Neo4j will be larger if the system space is 
considered. 

5.2.3 Query efficiency 

The experiments are conducted on LUBMs and DBpedia to verify the query efficiency of 
KGDB. There are four basic queries and four inference queries on LUBM datasets as well as four 
queries on DBpedia. Q_dbp1 contains large amount of input data and is highly 
selectable.Q_dbp2–Q_dbp4 are structurally equal, while different in data size. SPARQL and 
Cypher query statements are made with the same semantics and tested on the three systems. 

(1) SPARQL query 
gStore is an RDF graph database system and supports SPARQL query, enabling data 

management of large-scale knowledge graphs. As shown in Fig. 9,gStore fails to support the most 
complex query Q2, which can be completed by KGDB in a high efficiency. With the data size 
increasing, the query time taken by KGDB increases in a lower rate than that by gStore for Q3, so 
KGDB is more efficient than gStore in large-scale knowledge graph query. For Q1 and Q14, the 
query efficiencies are of the same order of magnitude, so they are comparable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Experimental results of SPARQL queries of KGDB and gStore on LUBMs 

The standard benchmark query Q2 on LUBM can lead to system error of gStore, so 
it cannot be directly executed. To be fair, we do not rewrite the query Q2. Q1 and Q3 are 
systematically consistent, however, Q3 has a larger size of data. There is a gradual 
increase in the execution time of Q3, showing the capability of KGDB on large-scale 
knowledge graph queries. The scale of data volume will not affect query efficiency. For 
the most time-consuming query Q14,where hundreds of thousands of data will be 
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included in the final result on LUBM50, the query time of KGDB is of the same order of 
maginitude as that of gStore. 

The experimental results of SPARQL inference query efficiency of KGDB and 
gStore on LUBM datasets are presented in Figure10. The queries can be evaluated in 
high efficiency in KGDB and gStore, though the results are null because the two systems 
do not support inference query. For benchmark queries on LUBM datasets, KGDB can 
complete the queries faster and its query time increases at a lower rate than that of 
gStore. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 10. Experimental results of SPARQL Inference query efficiency of KGDB and gStore on LUBMs 

According to Figure11, on DBpedia, KGDB spends shorter time than gStore for 
Q_dbp1–Q_dbp3. KGDB is an order of magnitude faster than gStore for the optimal query 
(Q_dbp1). Thus, KGDB is superior to gStore in the selection operations. For the slowest query 
(Q_dbp4), the query time of the two systems is of the same order of magnitude. 

 
Figure 11. Experimental results of SPARQL query efficiency of KGDB and gStore on DBpedia 

 (2) Cypher query 
Neo4j is a Cypher-based property graph database that obeys atomicity, consistency, isolation, 

and durability (ACID). It can process join operations faster. 
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As shown in Figure12, on LUBM datasets, KGDB spends less time than Neo4j for the three 
benchmark queries (Q1, Q3, and Q14); KGDB is nearly 70 times faster than Neo4j for the optimal 
query (Q3), and can reach the same order of magnitude of query time for the slowest query (Q2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12. Experimental results of SPARQL query efficiency of KGDB and Neo4j on LUBMs 

KGDB is slower than Neo4j for the most complicated triangular query (Q2). The query nodes 
are easily connected because of the storage scheme of Neo4j while KGDB, a relational database, 
has to conduct time-consuming JOIN operations. Nevertheless, KGDB surpasses Neo4j in more 
aspects: (1) KGDB originally supports the unified storage of RDF graphs and property graphs 
without a plug-in and calls for short time and less space than Neo4j, so it is more easier for KGDB 
to manage multiple knowledge graphs simultaneously. (2) KGDB supports both SPARQL and 
Cypher and realizes the interoperation between the two languages. 

As shown in Figure13, on DBpedia, KGDB is faster than Neo4j for all the queries and can be 
two orders of magnitude quicker for the optimal query (Q_dbp3). Even for the slowest query 
(Q_dbp4), KGDB is 14 times faster than Neo4j. 

With the data size increasing, the experimental results on LUBM datasets show us the 
following tendencies: Faster though it is, KGDB is less superior to Neo4j. Similar findings are 
proven for the most complex query (Q2). However, with the increase in data size, the query time 
of Neo4j rises at a lower rate than that of KGDB, but their difference is still of the same order of 
magnitude as before. However, due to semi-structured and sparse feature of real-world datasets, 
the increase in data size will give KGDB an advantage on DBpedia. 

 
Figure 13. Experimental results of Cypher query efficiency of KGDB and Neo4j on DBpedia 

 
 



116                                    International Journal of Software and Informatics, 2021, 11(1) 

6 Conclusions 

In this paper, we develop KGDB: a knowledge graph database system with unified data 
model and query language. 

(1) Unified storage scheme: KGDB can accomodate both RDF graphs and 
property graphs. Dictionary encoding is used in KGDB to save storage 
space. CS-based clustering is used to store untyped entities, so that 
semantically similar entities can be stored in the same relation table, 
increasing query efficiency. 

(2) Interoperable grammar layer: SPARQL and Cypher are semantically 
aligned. In other words, the two languages can be used to obtain the same 
query results for the same knowledge graph, thus achieving interoperability. 

(3) Unified semantic layer: SPARQL and Cypher can be transformed into query 
semantic trees in the form of relational algebra according to relevant rules. 

Extensive experiments are carried out on real-world and synthetic datasets to verify the high 
efficiency of the unified storage scheme and query processing method. KGDB is generally more 
efficient than gStore and Neo4j in the storage management and query processing of knowledge 
graphs for real-world datasets. In addition, the efficiency of KGDB is of the same order of 
magnitude as that of gStore and Neo4j for synthetic datasets. 

In this paper, we only discuss the knowledge graph management approaches of standalone 
systems. With the scale of data volume increasing, distributed knowledge graph management 
systems have been attracting increasing research efforts. In the future work, we will focus on the 
unified storage scheme and query processing method of knowledge graphs for the distributed 
environment. 
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Appendix 

1.  Query on LUBMs 
(1)  SPARQL query 

① Q1 
  SELECT ?X 
  WHERE 
   {?X rdf:type ub:GraduateStudent. 
   ?X ub:takesCourse 
   http://www.Department0.University0.edu/GraduateCourse0}; 
② Q2 
  SELECT ?X, ?Y, ?Z 
  WHERE 
   {?X rdf:type ub:GraduateStudent. 
   ?Y rdf:type ub:University. 
   ?Z rdf:type ub:Department. 
   ?X ub:memberOf ?Z. 
   ?Z ub:subOrganizationOf ?Y. 
   ?X ub:undergraduateDegreeFrom ?Y}; 
③ Q3 
  SELECT ?X 
  WHERE 
   {?X rdf:type ub:Publication. 
   ?X ub:publicationAuthor 
   http://www.Department0.University0.edu/AssistantProfessor0}; 
④ Q4 
  SELECT ?X, ?Y1, ?Y2, ?Y3 
  WHERE 
   {?Xrdf:typeub:Professor. 
   ?X ub:worksFor 〈http://www.Department0.University0.edu〉. 
   ?X ub:name ?Y1. 
   ?X ub:emailAddress ?Y2. 
   ?Xub:telephone ?Y3}; 
 ⑤ Q5 
  SELECT ?X 
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  WHERE 
   {?X rdf:type ub:Person. 
       ?X ub:memberOf 〈http://www.Department0.University0.edu〉}; 
⑥ Q6 
  SELECT ?X WHERE {?X rdf:type ub:Student}; 
⑦ Q11 
  SELECT ?X 
  WHERE 
   {?X rdf:type ub:ResearchGroup. 
       ?X ub:subOrganizationOf 〈http://www.University0.edu〉}; 
⑧ Q14 
  SELECT ?X 
  WHERE {?X rdf:type ub:UndergraduateStudent}; 

(2)  Cypher query  
① Q1 
  MATCH 
   (x:GraduateStudent) 
    [takesCourse]→ 
   (y:GraduateCourse 
    {uri:‘http://www.Department0.University0.edu/GraduateCourse0’}) 
  RETURN x; 
② Q2 
  MATCH 
   (x:GraduateStudent) [undergraduateDegreeFrom]→(y:University), 
   (z:Department) [subOrganizationOf]→(y), 
   (x) [memberOf]→(z) 
  RETURN x, y, z; 
③ Q3 
  MATCH 
   (x:Publication) 
   [publicationAuthor]→ 
   (y:AssistantProfessor 
    {uri:‘http://www.Department0.University0.edu/AssistantProfessor0’}) 
  RETURN x; 
④ Q14 
  MATCH 
  (x:undergraduatestudent) 
  RETURN x; 

2.  Query on DBpedia 
(1)  SPARQL query 

① Q_dbp1 
  SELECT ?a 
  WHERE 
  {?a 〈uri〉 “http://dbpedia.org/resource/Alabama”. 
  ?a rdf:type 〈AdministrativeRegion〉}; 
② Q_dbp2 
  SELECT ?a 
  WHERE (?a rdf:type 〈Disease〉); 
③ Q_dbp3 
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  SELECT ?a 
  WHERE (?a rdf:type 〈AdministrativeRegion〉); 
④ Q_dbp4 
  SELECT * 
  WHERE (?a rdf:type 〈TimePeriod〉); 

(2)  Cypher query 
① Q_dbp1 
  MATCH 
   (a:AdministrativeRegion{uri:‘http://dbpedia.org/resource/Alabama’}) 
  RETURN a; 
② Q_dbp2 
  MATCH (a:Disease) RETURN a; 
③ Q_dbp3 
  MATCH (a:AdministrativeRegion) RETURN a; 
④ Q_dbp4 
  MATCH (a:TimePeriod) RETURN a; 
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