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Abstract Intelligent tutoring systems (ITSs) acquire rich data about students’ behavior

during learning; data mining techniques can help to describe, interpret and predict student

behavior, and to evaluate progress in relation to learning outcomes. This paper surveys a

variety of data mining techniques for analyzing how students interact with ITSs, including

methods for handling hidden state variables, and for testing hypotheses. To illustrate these

methods we draw on data from two ITSs for math instruction. Educational datasets provide

new challenges to the data mining community, including inducing action patterns, designing

distance metrics, and inferring unobservable states associated with learning.
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1 Introduction

Teachers, school administrators and parents have always wanted to know how
their students are doing in the classroom. Recently, interest in tracking student
learning has grown dramatically due to increased emphasis on accountability in ed-
ucational settings. For example, in the United States, educators are in urgent need
of accessible and meaningful information about how students are learning, in order
to meet annual progress report requirements resulting from the 2002 “No Child Left
Behind” act[1]. Schools face significant pressure to improve learning outcomes, yet
improvement depends on the ability to identify in the short-term those student be-
haviors that are likely to be unproductive in the long term.

Intelligent tutoring systems (ITSs) potentially address the problem of assessing
and tracking students and the problem of improving learning outcomes. It is possible
to record keystroke-by-keystroke information as students use ITSs, and to process
it quickly to provide teachers up-to-the-minute assessments of their students’ per-
formance, rather than waiting for weekly tests or annual end-of-year assessments[6].
ITSs have been shown to provide effective instruction, with some results showing im-
provement of 20-25% on pre- and post-test measures[2, 3]. Yet at the same time, there
has been growing concern about the tendency of students to use such systems ineffec-
tively. Indeed, students may actively avoid effort by adopting behavioral strategies
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that allow them to avoid learning. For example, a student may deliberately enter
incorrect answers to elicit hints and, eventually, the correct answer from the ITS[4].
Thus, although ITS instruction is beneficial, its effectiveness might be increased if
maladaptive student behaviors could be identified.

Thus, data mining techiques are essential to both assessing students’ perfor-
mance and enhancing the effectiveness of their efforts with ITSs. Only recently have
researchers begun to examine ITS data in detail[5]. This paper surveys several tech-
niques we developed to model the behaviors of students using two mathematics ITSs.
One can look at ITS data on several scales, from characteristics of individual problems
(Section 2) to sequences of problems for individual students (Section 3) to samples of
entire tutoring sessions for groups of students (Sections 4,5). At each scale one can
both extract descriptive information (e.g., the average time required to solve a prob-
lem or the distribution of the number of problems in a tutoring session), and estimate
the structure and parameters of models (e.g., Markov models of actions or long-run
patterns of attention during tutoring sessions). One also can cluster students based
on parameters of models (Section 4.1) and test hypotheses about groups of students
(Section 5). This paper is primarily concerned with models of student behavior that
can be used to improve the experiences students have with tutoring systems. Thus,
we model the amount of time students are willing to spend on problems and how
it changes over the course of a session, and we model unobservable factors such as
engagement, using hidden variable models (Section 4.1).

The techniques in this paper were developed to analyze data from two math-
ematics ITSs: Wayang Outpost is an ITS for secondary school math; the dataset
includes two samples of students (MA and CA). The MA dataset was weighted with
a larger number of low achieving students, whereas the CA sample included a full
range of student achievement levels. The second ITS, AnimalWatch, is for mid-
dle school math. More information about these tutoring systems may be viewed at
http://www.cs.arizona.edu/∼beal/projects/.

The basic pattern of interactions with both the Wayang and AnimalWatch sys-
tems is this: The ITS selects a problem that it thinks will advance the student’s
learning. The student solves the problem and enters the answer, or selects an answer
from a multiple-choice menu. The ITS uses the answer to update its model of the
student’s competence. If the answer is wrong, the ITS presents or recommends hints
sequentially until the student gets the answer correct. The data include characteristics
of problems (e.g., expected and empirical difficulty, and the topics and skills they ex-
ercise), characteristics of hints (e.g., whether they are multimedia or text hints), and
characteristics of the student’s performance (e.g., the number of hints they require
and the time they devote to each).

2 Actions and Classifiers

The smallest scale at which data mining has a role is that of the individual
problem-solving interactions, of which the most interesting involve wrong answers and
hints. Because ITSs provide customized instruction to students, every interaction is
literally unique. Said differently, the number of combinations of student attributes,
versions of the ITS, problem topics, orders of presentation, selected hints, and latencies
or student responses, is so large that some abstraction is necessary if we are to find
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useful regularities in data. Consequently, we build classifiers of individual actions
taken by students on single problems. These actions are different for Wayang Outpost
and AnimalWatch, and thus required different pattern classifiers.

We stress that the classifiers we are about to discuss were designed by us, not
learned from data. The automatic induction of classifiers for problems and hints is
an open challenge for data mining, as discussed in Section 6, below. Because the
classification of actions is so fundamental to all the analyses in the rest of this paper,
we deal with it at some length.

Wayang Outpost, our secondary school math ITS, presented problems that in-
cluded a figure, table or other graphic, the question or equation to be solved, and
five answer options. The student received feedback (correct, incorrect) by clicking on
an answer option. The student could also click on a “hint” icon to view an ordered
series of audio and animation hints. The student could choose an answer at any
point, or continue to view hints until the solution was displayed. Wayang Outpost
thus required the student to request help.

The problems presented by the middle school math tutor, AnimalWatch, each
included a text introduction with information necessary to solve the problem, the
problem question or equation, an illustration, table or graphic, and an answer box.
Incorrect answers triggered immediate feedback. Feedback hints were ordered: Hint
1 provided text feedback (correct, incorrect); Hint 2 offered an “operation” text hint
(e.g., “Are you sure you are subtracting?”). Subsequent errors on the problem trig-
gered Hint 3, which offered a multimedia worked example or interactive hint that
could include multiple steps (e.g., dragging one-bars into tens-units on the screen
to compose the additive quantity). The student had to request multimedia help by
clicking on the “hint” icon.

We defined action patterns that might be associated with effective and ineffective
learning behaviors. They are patterns (as opposed to atomic actions) because they
include sequence and latency information, and are rough interpretations of the stu-
dent’s intentions. For example, for Wayang Outpost, a student who chooses multiple
incorrect answers before the correct answer might be trying to correct his or her own
errors, but might also be simply guessing. We use the time between clicks on the
answers to distinguish these interpretations, e.g., inter-click intervals of less than 5
seconds signal guessing. Similarly, if the latency between presenting a problem and
the student’s first answer is less than ten seconds, the student may be guessing. These
latencies were based on average times for the highest-performing students. Specifi-
cally, if an academically-proficient student required at least 10 seconds to read a math
problem before solving it, it is unlikely that the average student would arrive at the
correct answer in less than 10 seconds after the problem has loaded. Similarly, if
a proficient student takes more than 10 seconds between the choice of an incorrect
answer and the subsequent selection of the right answer, inter-click intervals of under
10 seconds are likely to mean that the student is guessing.

We defined five patterns associated with the high school math ITS: 1) Skipping
the problem, 2) Guessing/abusing help, 3) Solving problem independently but with
errors, 4) Learning by using multimedia help, 5) Solving problem independently and
accurately. We defined a larger number of action patterns — nine in all — for the
middle school ITS to differentiate the number of hints received by the student.
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3 Student Behavior Within Problems

In both AnimalWatch and Wayang Outpost students get hints when they make
mistakes, and in some cases they get a sequence of help interactions within a single
problem. We call these interactions hints. Students respond differently to sequences
of hints, so it is important to mine these sequences to extract patterns of student
behavior. In particular, it is useful to learn if students actually pay attention to the
hints, and how different versions of the ITS might influence whether students attend
to the hints.

In AnimalWatch, the hints ranged from textual reminders and questions (e.g.,
“no, try again” and “are you using the right operator?”) to sophisticated multimedia
help that guides the student through the process of solving the problem. In one
study, we compared students’ attention to versions of AnimalWatch that varied in
the availability of hints and the pace of instruction.

We asked the following question of AnimalWatch data: For every problem that
required at least one hint, what fraction of the total time required to solve the problem
was spent attending to each hint? The results are shown in Fig.1. The horizontal
axis shows the proportion of the total time required to solve a problem. The vertical
axis is organized by two variables: Hint number has six levels, for 1, 2, 3, 4, 5, > 5
hints, respectively. Group is either Heuristic, denoting a version of AnimalWatch that
provided up to two textual hints and then multimedia help on all subsequent hints;
ML, denoting a version that followed the same hint schedule but “pushed” problems
of increasing difficulty more aggressively than Heuristic; or Text, which provided no
help at all besides the textual feedback that an answer was right or wrong.

The left and right lines in Fig.1 represent mean and median proportions of
problem-solving time, respectively. Some aspects of Fig.1 were anticipated but some
were surprising. We expected the proportion of time on the third hint to be high
because this is where multimedia help is provided for the first time. We had no
such expectation for the Text group because they do not receive multimedia help.
We were surprised that the ML group spent so little time on the multimedia hints,
in contrast to the Heuristic group. In fact, they spent most time on the first hint
(which was “wrong, try again”) and roughly the same amount of time as the Heuris-
tic group on the second (“did you use the appropriate operator”), but then, unlike
the Heuristic group, they spent even less time attending to the third hint. Thus, the
detailed analysis of patterns in students’ hint usage revealed that trying to accelerate
the pace of students’ learning had the unintended effect of reducing their attention
to the multimedia hints.

3.1 Rule mining for action pattern sequences

ITS researchers are also interested in learning more about when students are
most likely to spend time on a problem versus deciding to guess. That is, can we
look at students’ actions over time and make predictions about their future behavior?
Such insights might help us to improve the design of pedagogical strategies used by
an ITS to maintain students’ interest in the learning activity.

Each student’s data record included an ordered sequence of action patterns (as
discussed in Section 2) representing her or his behavior on the math problems over
the course of the tutoring session. Each action pattern was coded as a letter, and
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the sequence of problems solved by a student could be coded as a sequence of letters
such as [AAECBD]. Can we find predictive rules in these sequences? For example,
if a student has guessed on two problems in a row, can we infer anything about
what the student will do on the current problem? Predictive rules will have the form
An−j . . . An → An+1, where the left hand side is a subsequence of actions and the
right hand side is the one we wish to predict. Can we find rules of this form, and
if so, what is the best value of j? If we view the generation of action patterns as a
Markov process then j is the order of the Markov chain. Or, j might be allowed to
vary, as described below.

Figure 1. Median and mean proportion of problem solving time in hint sequences for three versions

of AnimalWatch ITS

First, a word about estimating the accuracy of predictions: In the case of Wayang
Outpost, students can exhibit one of five action patterns on a math problem. However,
these patterns are not equally likely so the default accuracy of predictions is not 1/5.
We define the default accuracy to be the probability of the majority class action
pattern because, lacking any other information, one’s best guess is that the student’s
next action will be the majority class action. This turns out to be guess/abuse help.
With 2028 instances in the combined corpus of MA and CA students, this is the most
common of 7316 actions. Thus, the default accuracy is (2028 / 7316) = .277. This is
the accuracy level we have to beat with any predictor.

3.2 Accuracy of prediction rules

We developed a rule-mining algorithm to find rules of the form An−j . . . An →
An+1. This algorithm, called Very Predictive Ngrams (VPN) finds rules with different
values of j (unlike a Markov chain predictor of fixed order) so as to maximize predic-
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tiveness for a given number of rules[7]. The rules found by VPN predict the action that
maximizes the conditional probability Pr(An+1|An−j . . . An). The algorithm searches
iteratively for K such rules. At each iteration the algorithm greedily adds the rule
that will most reduce the errors in predictions. Let An−j−1, An−j . . . An → An+1 be
a child of the parent rule An−j . . . An → An+1. The VPN algorithm is greedy in the
sense that it will not necessary find the child, even if it has better prediction accuracy
than the parent, if it first finds another rule with better prediction accuracy than the
parent. Nevertheless, VPN finds relatively small sets of rules that have prediction
accuracies comparable to exhaustive sets of all possible rules of a given length (i.e.,
to Markov chain predictions of fixed order j).

The performance of VPN on Wayang Outpost action pattern sequences is shown
in Fig.2. The horizontal axis is K, the number of ngrams found by VPN. The curve
that drops from left to right is the error rate associated with each corpus of K rules.
The curve that rises from left to right is the average length of a rule in the corpus
(i.e., the average value of j).

Figure 2. Ngrams for Wayang Outpost action pattern sequences

VPN immediately finds five rules of length 1. With each, the error rate drops,
going from roughly 85% to roughly 55%. After that, the error rate decreases very
slowly, almost imperceptibly, while the average rule length increases. For these data,
it is hard to get much better accuracy than is provided by a Markov chain predictor
of order one. (For comparison purposes, an exhaustive corpus of 554 rules had an
error rate of 0.506, while VPN 50 rules have an error rate of 0.516.) The lesson for
designers of ITSs seems to be that the action pattern on the next problem depends
to a very great extent on the previous pattern and not much on earlier patterns.

4 Session-Scale Patterns

At the scale of short subsequences of action patterns, the behavior of students
appears to be nearly Markov, but at larger scales, useful patterns emerge. We will
focus on changes in the amount of time students spend on problems and hints over
the course of a session with the AnimalWatch ITS.

The algorithm for finding these larger-scale patterns is simply to track the pro-
portions of mutually exclusive and exhaustive attributes of problems over time for
each student, and then average these proportions over all students within a group.
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To illustrate, consider the time students spend on problems. Although this is a
continuous variable, it can be binned into mutually exclusive and exhaustive ranges.
Each problem falls into one bin, and we can track the proportions of all problems
that fall into each bin over all tutoring sessions. The results, smoothed with a sim-
ple exponential smoother, are shown in Fig.3. The three trajectories correspond to
spending less than 15 seconds on a problem (the trajectory that starts lowest), spend-
ing 15-35 seconds (the trajectory that remains roughly constant), and spending more
than 35 seconds (the trajectory that starts highest). The probability of each of these
is plotted on the vertical axis. The horizontal axis represents the number of problems
the student has seen.

Figure 3. Time in problem across problems

Figure 4. Action patterns across problems
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Note that the mean probability (over all students’ sessions) of spending more than
35 seconds on a problem falls sharply as the number of problems increases, just as the
average probability of spending fewer than 15 seconds increases. Interestingly, the
average probability of spending 15-35 seconds on a problem remains roughly constant
throughout sessions.

The amount of time that a student spends on a problem is to a large extent under
the student’s control. Thus, Fig.3 suggests that students are increasingly willing to
rush through problems. Conversely, they are less willing to spend a long time working
on a problem as a session wears on. However, they are willing to spend 15-35 seconds
working on a problem, irrespective of the number of problems they have already seen.
This kind of information is valuable for the designers of ITSs, and for teachers who
integrate technology-based instruction into the classroom.

A similar analysis can be done for action patterns. Figure 4 shows five series, one
for each of the five action patterns observed in interactions with the Wayang Outpost
ITS. Each point on a line represents the probability of observing the action pattern
associated with the line, on the nth problem.

Note that Pr(A1), which is action pattern “skip problem”, is quite low and
remains fairly constant across the session. Pr(A2), which is “guess/abuse help”, starts
low and increases steadily through the sequences, while Pr(A4), “solve with help”,
and Pr(A5), “solve without help”, start high and decline. An enigmatic pattern is
A3, which is attempting but failing to solve the problem, and not using multimedia
help.

These results for Wayang Outpost (Fig. 4) echo those for AnimalWatch (Fig. 3).
The interpretation of both results is that students are less willing to work on problems
as the tutoring session goes on. Under this interpretation it would seem students are
less and less engaged or motivated as the session goes on. Is there a way to model
students’ engagement, even though it is not directly observable? Little is known about
how students’ engagement evolves over time, or whether there are consistent trends
that might be exploited in the design of more effective pedagogical models.

4.1 Unobservable states

A challenge for data mining is to infer unobservable factors that might explain
patterns in students’ data. Students do not always perform in the most optimal
manner, but we do not yet have ways to estimate the intentional states that influence
their actions. Engagement has been suggested as a possible mechanism, referring
to transient processes such as fluctuations in the learner’s attention, willingness to
engage in effortful cognition, and emotions associated with successful and unsuccessful
problem solving. These processes are not observable, but they might be inferred by
models with hidden states, such as Hidden Markov Models (HMMs).

We fit HMMs to sequences of action patterns for students who worked with the
Wayang Outpost high school math ITS, with three hidden states representing levels
of engagement: low, average and high[8]. Although we have no direct evidence that
the hidden state actually corresponds to processes such as attention and cognitive
effort, the HMM approach allows us to evaluate qualitative differences between the
patterns, e.g., that the behaviors classified as Solving and Learning are likely to be
emitted when students are attending and trying hard, whereas Guessing is more likely
to be observed when students are not engaged, that is, not trying, perhaps due to
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fatigue, lack of confidence, or problems that are too difficult.
We tested the HMMs in several ways summarized in Table 1. First, we used the

Viterbi parse of each student’s HMM to predict his or her next action pattern and
compared the accuracy of these predictions with a) an order one Markov chain fit
to the student’s action sequence and b) an order one Markov chain fit to the entire
group of students (CA or MA). Prediction accuracies for students’ individual HMMs
were 10-15% higher than using the student’s own Markov chain and compared very
well with the Markov chain fit to the entire group.

It is very encouraging to see that the HMMs for individual students added enough
predictive power to handily surpass the individual students’ Markov chains and exceed
or nearly match the accuracy attained by pooling all the students’ data into one
Markov chain.

Table 1 Prediction accuracies using the HMMs and Markov chain models for the two datasets

Student’s HMM Student’s Markov Chain Pooled Markov Chain

CA 42.13% 33.43% 45.6%

MA 48.35% 32.48% 45.7%

Next, we clustered students’ individual HMMs using a variant of the BCD algor-
ithm[9]. We produced three clusters for the CA students and four for the MA students.
Remarkably, there were strong correspondences between the clusters across groups.
For instance, both groups had a cluster in which students persisted in medium to
high engagement states, and both had a cluster in which students started with low
engagement and gradually increased their engagement over time. The MA group
had a fourth cluster, not observed in the CA group, of students whose engagement
gradually got worse. The declining engagement of the MA students was consistent
with the fact that the MA sample included many students with weak math skills.

We used the average transition matrices for clusters, and also the average Markov
chains, to predict action patterns for individual students. The results, in Table 2, are
mostly worse than chance (recall, the default accuracy rate is .277). In sum, while an
individual’s HMM does a good job of predicting an individual’s action patterns, one
cannot predict action patterns from the average HMMs or Markov chains for clusters
of students.

Table 2 Prediction accuracies using the group HMMs and Markov chain models for the two

datasets

Group HMM Group Markov Chain

CA 34.40% 18.73%

MA 26.00% 15.52%

4.2 Session-Scale patterns of engagement

We can also track probabilities of engagement levels in exactly the same way as
probabilities of action patterns, above. First, for each student, we produce a Viterbi
parse of engagement levels. This is the sequence of transitions through engagement
states that makes the observed sequence of action patterns most likely. Then, having
inferred what a student’s engagement levels were likely to be over time, we get time
series of proportions of engagement levels. Fig.5 shows engagement levels across
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problems for students who worked with the high school math ITS. It shows that
students tend to start out the sessions in high engagement states, meaning that their
action choices and latencies suggest that they are attending and concentrating. The
probability of high engagement starts to decline around the 10th math problem, and
continues to decline throughout the rest of the session. This decline is paralleled by
a corresponding increase in the low engagement state.

Figure 5. Estimated engagement with the high school math ITS over problems

4.3 Between-Session patterns

The previous analyses indicate that we can model a student’s engagement by
using the student’s action sequence. However, from the perspective of an ITS de-
signer, this conclusion is somewhat limited in that it requires that we have the action
pattern sequence already in hand in order to diagnose the learner’s likely engagement
transitions. In other words, we do not know what kind of student we have until the
session is over. However, as ITSs become more capable and contentful, students will
work with them repeatedly, over several sessions, and so we might be able to use
models from earlier sessions to customize interactions with students in later sessions.
Roughly three dozen students had multiple sessions with the Wayang Outpost ITS,
so we could test whether an HMM fit to a student in one session can make good
predictions about that student in a later session.

4.4 Transferring models across sessions

For students who have multiple sessions with the ITS (10 from the CA group
and 25 from the MA group), we trained an HMM for each student based on data
from the first session and tested the model with data from the second session. The
test was simply to predict the next action pattern in the sequence of action patterns
in the second session. We compare our prediction results from the HMMs to those
from Markov chain models (MCs) that do not take into account any hidden variable
information. For the CA students, the average accuracy of a Session 1 HMM pre-
diction to Session 2 action patterns was .459, whereas the average accuracy for MA
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students was .365. Most encouragingly, the accuracy of a predictor on Session 1 is
very strongly correlated with its accuracy on Session 2. For CA and MA students the
correlations were .885 and .798, respectively. This means an ITS has good diagnostic
information: If a student’s Session 1 HMM does a good job of predicting her scores on
Session 1, then it will probably do a good job on Session 2. If not, the HMM should
not be used to predict performance on Session 2.

5 Learning Outcomes

We have explored opportunities for mining structure at several scales, from indi-
vidual problem solving actions to long-term changes in unobservable factors such as
engagement. Now we ask a different though related question: How can we tell whether
an ITS works well? One answer is to look at outcome variables such as scores on a
test after a tutoring session. However, outcome variables tell us little about what
students actually do during ITS sessions that might explain the outcomes.

By “explain” we mean that an experimental group exhibits a particular behavior
associated with a high learning outcome whereas a control group does not exhibit this
behavior and has a lower learning outcome. Thus, explanation requires us to compare
behaviors across groups in a statistically valid way[10]. Here is one such method for
comparing two groups:

1. Derive one or more functions θ(σi, σj) to compare students’ sequences of actions.
Typically this function returns a real number.

2. Let Ci = ni(ni− 1)/2 be the number of pairwise comparisons between students
within group Gi which contains ni students. Define Cj in the same way.

3. Let Ci∪j = ((ni + nj)2 − (ni + nj))/2 be the number of pairwise comparisons
between students across groups.

4. Let δ(i) =
∑

a,b∈Gi
θ(a, b) be the sum of all pairwise comparisons within Gi.

Define δ(j) in the same way.

5. Let ∆(i, j) = (δ(i)+δ(j))/(Ci+Cj)
δ(i∪j)/C(i∪j) .

6. If groups Gi and Gj are not different then one would expect ∆(i, j) = 1.0 . If
∆(i, j) 6= 1.0 , then we will wish to test whether it is significantly so. For this,
we use a randomization procedure:

7. Randomization: Throw all the sequences in Gi and Gj into a single bucket Gi+j .
Draw ni sequences at random from Gi+j and call them G∗i . Call the remaining
nj sequences G∗j . Repeat steps 1-5 to get a single value of ∆(i, j)∗. Repeat
this process to get a few hundred values of ∆(i, j)∗. The distribution of ∆(i, j)∗

serves as a sampling distribution under the null hypothesis that groups Gi and
Gj are not different. We compare ∆(i, j) to this distribution to get a p value,
a probability of incorrectly rejecting the null hypothesis when it is true. (See
Ref.[11] for details on randomization and bootstrap hypothesis testing.)

This procedure generalizes to multiple groups in the obvious way: If there are
no differences between the groups then the average comparison among elements in
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each group will equal the average comparison among elements of the union of all the
groups.

5.1 Comparing sequences for text and heuristic students

We used the preceding method to compare progress for students who worked
with either the Text or Heuristic version of the AnimalWatch ITS (Text provided only
feedback about answer accuracy; Heuristic provided multimedia help). We looked at
each student after 0, 10, 20, . . . , 90 problems and recorded how many problems on each
of nine mathematics topics the student solved. Students’ sequences were compared
with the following function:

θ(σi, σj) =
∑

t=0,10,20,...

√ ∑

i=1,2,...,9

(mi,a −mi,b)2

That is, for two students, a and b, we look at the number of problems, m, of
each class i = 1, 2, . . . , 9 solved by each student, and square the differences. In other
words, we treat a student’s sequence as a trajectory through a nine-dimensional space,
where each dimension is a problem class and each location in the space is given by
a nine-vector of the number of problems of each class solved at that point. Then we
compare sequences by the sum of Euclidean distances between corresponding points
(i.e., points with equal values of t) in nine-space.

The test statistic was rejected only twice in 1000 randomization trials, so we
can reject the null hypothesis that progress through the nine-topic problem space is
the same for students in the Text and Heuristic conditions, with p = .002, a highly
significant result.

It is one thing to test whether students in different experimental groups are
different, another to visualize how they are different. This is not easily done when
progress is in a nine-dimensional space. However, we can track the number of problem
classes a student has mastered to some level at each point in a session. We chose a
50% criterion level, meaning that at a given point in a sequence, a student must have
mastered 50% of the problems within a class to be given credit for mastery of that
class at that point. We divided the students’ sequences into subsequences of size
10 and calculated mastery, as defined, for each subsequence. Then we averaged the
results over students, shown in Fig.6.

Figure 6. Problem classes mastered to criterion for two versions of the AnimalWatch ITS
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The vertical axis is the mean number of problem classes mastered at the 50% level,
the horizontal axis is actually ten points, one for each subsequence of ten problems,
and so represents 100 problems. The higher of the two lines corresponds to the
Heuristic condition, the lower to Text. One sees that on average, a student in the
Heuristic condition masters roughly five topics to the criterion level of 50% in the
first 100 problems, whereas students in the Text condition master only 3.5 topics to
this level in the same number of attempts. These curves also can be compared with
our randomization procedure, and are significantly different. Thus, the results help
to establish that different pedagogical strategies used in the ITS do have an overall
effect on students’ progress, even though individual students solve different sequences
of problems.

5.2 Linking action patterns to learning outcomes

Above, we defined examples of specific patterns of behavior that students exhibit
when working with the Wayang Outpost ITS, such as guessing or learning by using
the multimedia help, and showed that the pattern sequences could be used to predict
how students would behave on subsequent problems. Here, we investigate whether the
actions that students take with Wayang problems could be linked to actual changes in
their math performance as indicated by improvement from pre- to post-tests of math
skill. In contrast to the work presented earlier, we model the dynamics of students’
performance with a dynamic Bayesian network.

Data from one sample of students was used to train a Dynamic Bayesian Net-
work (DBN) model to recognize sequences of actions and interaction latencies that
suggested the student was trying to learn by using the ITS help resources, or was
trying to learn through independent effort[12]. Low estimates for both learning goals
would suggest that the student was trying to avoid effort, for example, by guessing.
The training data set included sequences of actions and interaction intervals captured
from 115 students who completed 2151 Wayang Outpost problems. The DBN es-
timates of the student’s learning goals (learn with hints, learn independently) were
updated after each action was logged with a timestamp.

The resulting DBN model was evaluated with test data from an independent
sample of students (N = 115). These students were given a pre-test which included
math problems similar to those tutored in the ITS. Students then worked with the
Wayang ITS, completing an average of 30 problems, and finally took a post-test. The
pre and post-tests were presented to students on the computer, with answers scored
automatically and downloaded for analysis.

The DBN model estimates for each student were averaged across the number of
ITS problems completed by that student. Model estimates were used to generate a
score for hint-based learning, ranging from 0 - 3, as well as a score for independent
learning, ranging from 1 - 4. A student could receive a score of 0 in the model for
hint-based learning if he or she never requested to view the multimedia hints in the
ITS. In contrast, the scale for independent learning was anchored at 1 because if
the problem was available on the computer screen, it was possible the student was
attempting to solve it. The resulting scores were used to group students into four
groups: Students who had low scores for both hint-based and independent learning;
those with high hint-based and low independent learning scores; students with low
hint-based and high independent learning scores; and students with high scores for
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both hint-based and independent learning.
We examined the relation of students’ pre-test scores and their scores for indepen-

dent learning while working with the Wayang ITS, as estimated by the DBN model.
The prediction was that students who could learn to solve the ITS problems without
using the multimedia help features should be those who had relatively strong math
skills, as indicated by higher pre-test scores. This prediction was supported; there was
a significant relation between pre-test scores and independent-study scores. Thus, the
DBN model captured differences in students’ sequences of actions with the ITS that
were significantly related to independent estimates of their initial math skills.

Next, we looked the relation of the DBN estimates to changes in pre- to post-test
scores. Students who scored below the pre-test mean (those with weak math skills)
fell into one of two groups: Students whose DBN estimates indicated that they were
trying to avoid effort, and those with estimates suggesting that they were trying to
learn by using the ITS help resources. Students with weak math skills who were
estimated to be avoiding effort did not improve on the post-test. However, students
who started with equally poor scores on the pre-test but who were estimated by the
DBN to be trying to learn did show significant improvement on the post-test.

The model was also predictive for students who scored above the mean on the
pre-test. The DBN model estimated that most of these students were trying to learn
independently and, in fact, they showed significant improvement on the post-test.
Thus, the results indicated the DBN model trained on data from one sample could
successfully detect meaningful patterns in the actions of students in an independent
sample, and that the model estimates predicted their actual learning outcomes.

6 Challenges for Educational Data Mining

We showed that ITS data has structure at several scales, from micro-sequences
of hints, to short sequences of actions, and to long-term patterns during sessions and
between sessions. We demonstrated the utility (in terms of prediction accuracy) of
models with hidden state. We introduced a method to derive p values for statistical
comparisons of groups of sequences. Some of our analyses were done algorithmically,
others the old-fashioned way, with statistics packages. Thus, the first challenge to the
data mining community is to develop algorithms to find automatically some of the
regularities we found by hand.

Of these, the most important are what we call action patterns (Section 2), which
are the abstractions on which all our subsequent analyses are based. To define action
patterns, we used information about problem difficulty, the distribution of latencies,
the best-performing students, and the latencies and correctness of responses on par-
ticular problems. A fine challenge for data mining is to exploit these and other kinds
of information about problems to induce action patterns automatically.

Another challenge is to invent new distance measures for comparing sequences.
The generalized Euclidean distance in the previous section is adequate but it does not
acknowledge that every problem instance has structure, which includes latencies, the
sequences of hints, levels of engagement, the problem topic, the number of problems
a student has seen, and so on. It is one thing to compare the raw counts of each of
nine kinds of problems with Euclidean distance, another to compare highly-structured
records as just described.
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A third challenge is to develop more sophisticated ways to induce intentional
states such as engagement. Our HMMs induced something we called engagement, and
we were happy to see engagement profiles for students cluster nicely and comparably
across student populations. Yet we have no independent verification that the hidden
states in our HMMs actually correspond to intentional states. This experimental work
needs to be done and the HMM models (or other hidden-state models) need to be
refined.

A fourth challenge is to use the discoveries revealed by data mining to improve
the design of tutoring systems. For example, we have found structures in the se-
quences of problem solving actions that suggest variations in students’ engagement
over the course of a class session. Yet it is not entirely clear how the ITS should
respond to shifts in the learner’s interest and attention. In a pilot study, we added
pedagogical messages to Wayang Outpost that were designed to help students re-focus
their attention and to think about their learning goals. The messages were triggered
to appear on the screen when guessing behavior was detected by the ITS. Students
were asked to rate the value, helpfulness and appeal of the messages at the end of the
activity. Although students rated the messages as believable and appropriate, they
also indicated that they found the messages to be intrusive. Thus, although the ITS
was able to detect guessing behavior, students had a strongly negative reaction to the
intervention. It is possible that other responses by the ITS might be more successful
in terms of helping students to sustain their attention on learning, but additional
research will be required to design, deploy and evaluate such interventions.

The value of data mining for educational applications is enormous. National
standards pertain to end results — performance — and provide no information about
the process of learning. Teachers cannot easily individualize instruction because they
do not have fine-grained analyses of how their students learn. Report cards are crude
assessments and arrive too late to help. Whether one applies data mining techniques
to the rich information available from ITSs or to other information gathered in class-
rooms, there is great potential for data mining to improve the quality of educational
experiences. In addition, data mining approaches can help the designers of tutoring
systems evaluate the performance of their systems when deployed with students in
realistic classroom situations, and provide an empirical foundation for improving the
software.
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