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Abstract Predicting and explaining the behavior of others in terms of mental states

is indispensable for everyday life. It will be equally important for artificial agents. We

present an inference system for representing and reasoning about mental states, and use it to

provide a formal analysis of the false-belief task. The system allows for the representation of

information about events, causation, and perceptual, doxastic, and epistemic states (vision,

belief, and knowledge), incorporating ideas from the event calculus and multi-agent epistemic

logic. Unlike previous AI formalisms, our focus here is on mechanized proofs and proof

programmability, not on metamathematical results. Reasoning is performed via relatively

cognitively plausible inference rules, and a degree of automation is achieved by general-

purpose inference methods and by a syntactic embedding of the system in first-order logic.
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1 Introduction

Interpreting the behavior of other people is indispensable for everyday life. It is
something that we do constantly, on a daily basis, and it helps us not only to make
sense of human behavior, but also to predict it and—to a certain extent—to control
it. How exactly do we manage that? That is not currently known, but many have
argued that the ability to ascribe mental states to others and to reason about such
mental states is a key component of our capacity to understand human behavior.
In particular, all social transactions, from engaging in commerce and negotiating to
making jokes and empathizing with other people’s pain or joy, appear to require at
least a rudimentary grasp of common-sense psychology (CSP), i.e., a large body of
truisms such as the following: When an agent a (1) wants to achieve a certain state of
affairs p, and (2) believes that some action c can bring about p, and (3) a knows how
to carry out c; then, ceteris paribus,1) a will carry out c; when a sees that p, a knows
that p; when a fears that p and a discovers that p is the case, a is disappointed; and
so on.

Artificial agents without a mastery of CSP would be severely handicapped in their
interactions with humans. This could present problems not only for artificial agents
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1) Assuming that a is able to carry out c, that a has no conflicting desires that override his goal that
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trying to interpret human behavior, but also for artificial agents trying to interpret
the behavior of one another. When a system exhibits a complex but rational behavior,
and detailed knowledge of its internal structure is not available, the best strategy for
predicting and explaining its actions might be to analyze its behavior in intentional
terms, i.e., in terms of mental states such as beliefs and desires (regardless of whether
the system actually has genuine mental states; for the purposes of this work we take
a thoroughly instrumentalist view of mental states). Mentalistic models are likely to
be particularly apt for agents trying to manipulate the behavior of other agents.

Any computational treatment of CSP will have to integrate action and cognition.
Agents must be able to reason about the causes and effects of various events, whether
they are non-intentional physical events or intentional events brought about by their
own agency. More importantly, they must be able to reason about what others be-
lieve or know about such events. To that end, we present a system which combines
and adapts ideas drawn from the event calculus and from multi-agent epistemic log-
ics. It is based on multi-sorted first-order logic extended with subsorting, epistemic
operators for perception, belief, and knowledge, and mechanisms for reasoning about
causation and action. Using subsorting, we formally model agent actions as types of
events, which enables us to use the resources of the event calculus to represent and
reason about agent actions. The usual axioms of the event calculus are encoded as
common knowledge, suggesting that people have an understanding of the basic folk
laws of causality (innate or acquired), and are indeed aware that others have such an
understanding.

It is important to be clear about what we hope to accomplish through the present
work. In general, any logical system or methodology capable of representing and
reasoning about intentional notions such as knowledge can have at least three different
uses. First, it can serve as a tool for the specification, analysis, and verification of
rational agents. Second, in tandem with some appropriate reasoning mechanism, it
can serve as a knowledge representation framework, i.e., it can be used by artificial
agents to represent their own “mental states”—and those of other agents—and to
deliberate and act in accordance with those states and their environment. Finally, it
can be used to provide formal models of certain interesting cognitive phenomena. One
intended contribution of our present work is of the third sort, namely, to provide a
formal model of false-belief attributions, and, in particular, a description of the logical
competence of an agent capable of passing a false-belief task. It addresses questions
such as the following: What sort of principles is it plausible to assume that an agent
has to deploy in order to be able to succeed on a false-belief task? What is the depth
and complexity of the required reasoning? Can such reasoning be automated, and if
so, how? These questions have not been taken up in detail in the relevant discussions
in cognitive science and the philosophy of mind, which have been couched in overly
abstract and rather vague terms. Formal computational models such as the one we
present here can help to ground such discussions, to clarify conceptual issues, and to
begin to answer important questions in a concrete setting.

Although the import of such a model is primarily scientific, there can be interest-
ing engineering implications. For instance, if the formalism is sufficiently expressive
and versatile, and the posited computational mechanisms can be automated with
reasonable efficiency, then the system can make contributions to the first two areas
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mentioned above. We believe that our system has such potential for two reasons.
First, the combination of epistemic constructs such as common knowledge with the
conceptual resources of the event calculus for dealing with causation appears to afford
considerable expressive power, as demonstrated by the sample model we present in
this paper. A key technical insight behind this combination is the modelling of agent
actions as events via subsorting. Second, procedural abstraction mechanisms appear
to hold significant promise for automation; we discuss this issue later in more detail.

The remainder of this paper is structured as follows. The next section gives
the formal definition of our system. Section 3 represents the false-belief task in our
system, and Section 4 presents a model of the reasoning that is required to succeed
in such a task, carried out in a modular fashion by collaborating methods. Section 5
presents an encoding of the system in first-order logic with a view to making reasoning
in the system amenable to ATP technology. Finally, section 6 discusses some related
work and concludes.

2 A Calculus for Representing and Reasoning about Actions and Mental
States

The syntactic and semantic problems that arise when one tries to use classical
logic to represent and reason about intentional notions are well-known. Syntacti-
cally, modelling belief or knowledge relationally is problematic because one believes
or knows arbitrarily complex propositions, whereas the arguments of relation sym-
bols are terms built from constants, variables, and function symbols. (The objects
of belief could be encoded by strings, but such representations are too low-level for
most purposes.) Semantically, the main issue is the referential opacity (or intensional-
ity) exhibited by propositional-attitude operators. In intensional contexts one cannot
freely substitute one coreferential term for another. Broadly speaking, there are two
ways of addressing these issues. One is to use a modal logic, with built-in syntactic
operators for intentional notions. The other is to retain classical logic but distinguish
between an object-language and a meta-language, representing intentional discourse
at the object level. Each approach has its advantages and drawbacks. Retaining
classical logic has the important advantage of efficiency, in that (semi-)automated
deduction systems for classical logic, such as resolution provers—which have made
impressive strides over the last decade—can be used for reasoning. This is the option
we have chosen in some previous work[3]. One disadvantage of this approach is that
when the object language is first-order (includes quantification), then notions such as
substitutions and alphabetic equivalence must be explicitly encoded. Depending on
the facilities provided by the meta-language, this does not need to be overly oner-
ous, but it does require extra effort. The modal-logic approach has the advantage of
solving the syntactic and referential-opacity problems directly, without the need to
distinguish an object-language and a meta-language. In this work we combine both
approaches. The system is formulated (and implemented) as a properly intensional
calculus, with knowledge, belief, etc., represented as sentential operators. For pur-
poses of modeling, specification, and verification, the system is used in this form. For
using the system as a knowledge-representation framework by artificial agents trying
to negotiate the behavior of other agents, we have encoded the system in first-order
logic to make reasoning in it more amenable to automated theorem-proving methods.
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Figure 1. The specification of sorts, function symbols, terms, and propositions

The specification of the syntax of our system appears in Fig. 1, which describes
the various sorts of our universe (S), the signatures of certain built-in function sym-
bols (f), and the abstract syntax of terms (t) and propositions (P ). The symbol �
denotes subsorting. Propositions of the form S(a, P ), B(a, P ), and K(a, P ) should
be understood as saying that agent a sees that P is the case, believes that P , and
knows that P , respectively. Propositions of the form C(P ) assert that P is commonly
known. Sort annotations will generally be omitted, as they are easily deducible from
the context. We write P [x �→ t] for the proposition obtained from P by replacing
every free occurrence of x by t, assuming that t is of a sort compatible with the sort
of the free occurrences in question, and taking care to rename P as necessary to avoid
variable capture. We use the infix notation t1 < t2 instead of prior(t1, t2).

We express the following standard axioms of the event calculus as common knowl-
edge:

[A1] C(∀ f, t . initially(f) ∧ ¬clipped (0, f, t) ⇒ holds(f, t))

[A2] C(∀ e, f, t1, t2 . happens(e, t1) ∧ initiates(e, f, t1) ∧ t1 < t2 ∧
¬clipped (t1, f, t2) ⇒ holds(f, t2))

[A3] C(∀ t1, f, t2 . clipped (t1, f, t2) ⇔
[∃ e, t . happens(e, t) ∧ t1 < t < t2 ∧ terminates(e, f, t)])

suggesting that people have a (possibly innate) understanding of basic causality prin-
ciples, and are indeed aware that everybody has such an understanding. In addition
to [A1]—[A3], we postulate a few more axioms pertaining to what people know or
believe about causality. First, agents know the events that they intentionally bring
about themselves—that is part of what “action” means. In fact, this is common
knowledge. The following axiom expresses this:

[A4] C(∀ a, d, t . happens(action(a, d), t) ⇒K(a, happens(action(a, d), t)))

The next axiom states that it is common knowledge that if an agent a believes
that a certain fluent f holds at t and he does not believe that f has been clipped
between t and t′, then he will also believe that f holds at t′:
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[A5] C(∀ a, f, t, t′ . B(a, holds(f, t)) ∧ B(a, t < t′) ∧ ¬B(a, clipped(t, f, t′))
⇒B(a, holds(f, t′)))

The final axiom states that if a believes that b believes that f holds at t1 and a

believes that nothing has happened between t1 and t2 to change b’s mind, then a will
believe that b will not think that f has been clipped between t1 and t2:

[A6] ∀ a, b, t1, t2, f . [B(a,B(b, holds(f, t1))) ∧B(a,¬∃ e, t . B(b, happens(e, t))

∧ B(b, t1 < t < t2) ∧ B(b, terminates(e, f, t)))] ⇒B(a,¬B(b, clipped(t1, f, t2)))

This captures a form of closed-world reasoning, for it could well be the case that,
in fact, b has come to believe that something has happened between t and t′ that
terminated f , and therefore no longer believes that f holds. But if a believes that
there have been no such events, then it is reasonable for a to assume that b will not
believe that f has been clipped.

In addition to the usual introduction and elimination rules for first-order predi-
cate logic with equality, we will make use of the following inference rules:

[R1]
C(S(a, P ) ⇒K(a, P ))

[R2]
C(K(a, P ) ⇒B(a, P ))

C(P )
[R3]

K(a1,K(a2,K(a3, P )))

K(a, P )
[R4]

P

[R1] says that it is common knowledge that visual perception is a justified source of
knowledge. In other words, it is commonly known that if I see that P , I know P .2)

[R2] says that it is commonly known that knowledge requires belief, while [R3] cap-
tures an essential property of common knowledge. Usually common knowledge of a
proposition P is taken to mean that everybody knows that P , everybody knows that
everybody knows that P , and so on ad infinitum. This is captured by recursive rules
that allow us to “unfold” the common-knowledge operator arbitrarily many times.
However, this viewpoint is quite problematic for finite knowers of limited cognitive
capacity. After three or four levels of nesting, iterated knowledge claims become
unintelligible. Because in the present setting we are concerned with cognitive plau-
sibility, we refrain from characterizing common knowledge in the customary strong
form, imposing instead limit of three levels of iteration, as indicated in [R3].3) [R4] is
a veracity rule for knowledge.

The following rules can now be readily derived:

2) We ignore here the issue of perceptual illusions.
3) Although there is not enough space here for a full discussion, we point out that third-order

epistemic and doxastic states (as opposed to n-order for n > 3) are often held to be at a level of
iteration sufficient for general accounts of human thinking, e.g., see Dennett (1978). This is not to

say that fairly realistic scenarios involving iteration of 4 or even 5 levels cannot be devised, but in
the present paper we have used 3 for the purpose of modeling the false-belief task.
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C(P )
[DR1]

K(a1,K(a2, P ))

C(P )
[DR2]

K(a, P )

C(P )
[DR3]

P

S(a, P )
[DR4]

K(a, P )

K(a, P )
[DR5]

B(a, P )

We next have the following three rules:

[R5]
C(K(a, P1 ⇒P2) ⇒K(a, P1) ⇒K(a, P2))

[R6]
C(B(a, P1 ⇒P2) ⇒B(a, P1) ⇒B(a, P2))

[R7]
C(C(P1 ⇒P2) ⇒C(P1) ⇒C(P2))

From these we can easily derive the so-called Kripke (“K”) rules for knowledge, belief,
and common knowledge:

K(a, P1 ⇒P2) K(a, P1)
[DR6]

K(a, P2)

We likewise have derived rules [DR7] and [DR8] for belief and common knowledge,
respectively (omitted here). We also assume that a few straightforward tautologies
are common knowledge, and the self-explanatory [R11]:

[R8]
C((∀ x . P ) ⇒P [x �→ t])

[R9]
C([P1 ⇔P2] ⇒¬P2 ⇒¬P1)

[R10]
C([P1 ∧ · · · ∧ Pn ⇒P ] ⇒ [P1 ⇒ · · · ⇒Pn ⇒P ])

B(a, P1) B(a, P2)
[R11]

B(a, P1 ∧ P2)

Note that usually it is postulated that every tautology is common knowledge.
If we took that as a principle, the presentation of the system could be somewhat
simplified. However, such a principle (and other “logical omniscience” principles like
it) is wildly implausible, as has often been pointed out. Since we do not accept such
unrestricted principles, we only posit certain specific tautologies that are intuitively
deemed as obvious. While this is not a general solution, it nevertheless averts the
cognitive implausibility of the unrestricted rules, and also serves to isolate the logical
knowledge that we need to attribute to agents for a specific reasoning problem.

The following rules are now readily derived:4)

4) Derivation proofs are omitted, but can be obtained (along with the computer implementation of
the system) by contacting the authors.
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K(a, ∀ x . P )
[DR9]

K(a, P [x �→ t])

B(a, ∀ x . P )
[DR10]

B(a, P [x �→ t])

C(∀ x . P )
[DR11]

C(P [x �→ t])

B(a1,K(a2, P ))
[DR12]

B(a1,B(a2, P ))

K(a1,K(a2, P1 ⇒P2)) K(a1,K(a2, P1))
[DR13]

K(a1,K(a2, P2))

B(a1,B(a2, P1 ⇒P2)) B(a1,B(a2, P1))
[DR14]

B(a1,B(a2, P2))

K(a1,K(a2, P1 ⇔P2)) K(a1,K(a2,¬P2))
[DR15]

K(a1,K(a2,¬P1))

B(a1,B(a2, P1 ⇔P2)) B(a1,B(a2,¬P2))
[DR16]

B(a1,B(a2,¬P1))

K(a1,K(a2, [P1 ∧ · · · ∧ Pn] ⇒P ))

K(a1,K(a2, P1)) · · · K(a1,K(a2, Pn))
[DR17]

K(a1,K(a2, P ))

B(a1,B(a2, [P1 ∧ · · · ∧ Pn] ⇒P ))

B(a1,B(a2, P1)) · · · B(a1,B(a2, Pn))
[DR18]

B(a1,B(a2, P ))
B(a, P1 ∧ P2 ∧ P3 ⇒P4)

B(a, P1) B(a, P2) B(a, P3)
[DR19]

B(a, P4)

The system presented in this section has been implemented in the form of a
denotational proof language similar to the Athena system[1], but with the operators
for belief, knowledge, etc., directly available as propositional constructors. Note that
this system is altogether different from its encoding in Athena described in section 5.

3 Encoding the False-Belief Task

False-belief scenarios can be regarded as the drosophila of computational theo-
ries of mind. Experiments with false beliefs were first carried out by Wimmer and
Perner[12]. In a typical scenario, a child (we will call her Alice) is presented with a
story in which a character (we will call him Bob) places an object (say, a cookie) in a
certain location l1, say in a particular kitchen cabinet. Then Bob leaves, and during
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his absence someone else (say, Charlie) removes the object from its original location
l1 and puts it in a different location l2 (say, a kitchen drawer). Alice is then asked
to predict where Bob will look for the object when he gets back, the right answer,
of course, being the original location—the cabinet. In this section we show how to
formalize this scenario in our calculus. In the next section we will present a formal
explanation as to how Alice can come to acquire the correct belief about Bob’s false
belief.

We introduce the sort Location and the following function symbols specifically
for reasoning about the false-belief task:

places : Object×Location→ ActionType

moves : Object×Location×Location→ ActionType

located : Object× Location→ Fluent

Intuitively, action(a, places(o, l)) signifies a’s action of placing object o in location l,
while action(a,moves(o, l1, l2)) is a’s action of moving object o from location l1 to
location l2. It is common knowledge that placing o in l initiates the fluent located(o, l):

[D1] C(∀ a, t, o, l . initiates(action(a, places(o, l)), located(o, l), t))

It is likewise known that if an object o is located at l1 at a time t, then the act of
moving o from l1 to l2 results in o being located at l2:

[D2] C(∀ a, t, o, l1, l2 . holds(located(o, l1), t) ⇒
initiates(action(a,moves(o, l1, l2)), located(o, l2), t))

If, in addition, the new location is different from the old one, the move terminates
the fluent located(o, l1):

[D3] C(∀ a, t, o, l1, l2 . holds(located(o, l1), t) ∧ l1 �= l2 ⇒
terminates(action(a,moves(o, l1, l2)), located(o, l1), t))

The following axiom captures the constraint that an object cannot be in more
than one place at one time; this is also common knowledge:

[D4] C(∀ o, t, l1, l2 . holds(located(o, l1), t) ∧ holds(located(o, l2), t) ⇒ l1 = l2)

We introduce three time moments that are central to the narrative of the false-
belief task: beginning , departure, and return. The first signifies the time point when
Bob places the cookie in the cabinet, while departure and return mark the points
when he leaves and comes back, respectively. We assume that it’s common knowledge
that these three time points are linearly ordered in the obvious manner:

[D5] C(beginning < departure < return).

We also introduce two distinct locations, cabinet and drawer :

[D6] C(cabinet �= drawer ).
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Finally, we introduce a domain Cookie as a subsort of Object, and declare a single
element of it, cookie . It is a given premise that, in the beginning, Alice sees Bob place
the cookie in the cabinet:

[D7] S(Alice, happens(action(Bob, places(cookie , cabinet)), beginning)).

4 Modeling the Reasoning Underlying False-Belief Tasks, and Automat-
ing It via Abstraction

At this point we have enough representational and reasoning machinery in place
to infer the correct conclusion from a couple of obvious premises. However, a mono-
lithic derivation of the conclusion from the premises would be unsatisfactory, as it
would not give us a story about how such reasoning can be dynamically put together.
Agents must be able to reason about the behavior of other agents efficiently. It is
not at all obvious how efficiency can be achieved in the absence of mechanisms for
abstraction, modularity, and reusability.

We can begin to address both issues by pursuing further the idea of derived
inference rules, and by borrowing a page from classic work in cognitive science and
production systems. Suppose that we had a mechanism which enabled the derivation
of not only schematic inference rules, such as the ones that we presented in section 2,
but derived inference rules allowing for arbitrary computation and search. We could
then formulate generic inference rules, capable of being applied to an unbounded
(potentially infinite) number of arbitrarily complex concrete situations.

Our system has a notion of method that allows for that type of abstraction and
encapsulation. Methods are derived inference rules, not just of the schematic kind, but
incorporating arbitrary computation and search. They are thus more general than the
simple if-then rules of production systems, and more akin to the knowledge sources (or
“demons”) of blackboard systems[10]. They can be viewed as encapsulating specialized
expertise in deriving certain types of conclusions from certain given information. They
can be parameterized over any variables, e.g., arbitrary agents or time points.

A key role in our system is played by an associative data structure (shared by
all methods) known as the assumption base, which is an efficiently indexed collection
of propositions that represent the collective knowledge state at any given moment,
including perceptual knowledge. The assumption base is capable of serving as a com-
munication buffer for the various methods. Finally, the control executive is itself a
method, which directs the reasoning process incrementally by invoking various meth-
ods triggered by the contents of the assumption base.

We describe below three general-purpose methods for reasoning in the calculus
we have presented. With these methods, the reasoning for the false-belief task can
be performed in a handful of lines—essentially with one invocation of each of these
methods. We stress that these methods are not ad hoc or hardwired to false-belief
tasks. They are generic, and can be reused in any context that requires reasoning
about other minds and satisfies the relevant preconditions. In particular, the methods
do not contain or require any information specific to false-belief tasks.
− Method 1: This method, which we call M1, shows that when an agent a1 sees an
agent a2 perform some action-type α at some time point t, a1 knows that a2 knows
that a2 has carried out α at t. M1 is parameterized over a1, a2, α, and t:
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1. The starting premise is that a1 sees a2 perform α at t:

S(a1, happens(action(a2, α), t)) (1.1)

2. Therefore, a1 knows that the corresponding event has occurred at t:

K(a1, happens(action(a2, α), t)) (1.2)

This follows from the preceding premise and [DR4].
3. From [A4] and [DR2] we obtain:

K(a1, ∀ a, α, t . happens(action(a, α), t) ⇒
K(a, happens(action(a, α), t))) (1.3)

4. From (3) and [DR9] we get:

K(a1, happens(action(a2, α), t) ⇒
K(a2, happens(action(a2, α), t))) (1.4)

5. From (4), (2), and [DR6] we get:

K(a1,K(a2, happens(action(a2, α), t))) (1.5)

− Method 2: The second method, M2, shows that when (1) it is common knowledge
that a certain event e initiates a fluent f ; (2) an agent a1 knows that an agent a2

knows that e has happened at a time t1; (3) it is commonly known that t1 < t2; and
(4) a1 knows that a2 knows that nothing happens between t1 and t2 to terminate the
fluent f ; then a1 knows that a2 knows that f holds at t2. M2 is parameterized over
a1, a2, e, f , t1, and t2:

1. The starting premises are the following:

P1: C(∀ t . initiates(e, f, t));

P2: K(a1,K(a2, happens(e, t1)));

P3: C(t1 < t2);

P4:
K(a1,K(a2,¬∃ e, t . happens(e, t) ∧
t1 < t < t2 ∧ terminates(e, f, t))).

From P1, [DR11], and [DR1], we get:

K(a1,K(a2, initiates(e, f, t1))) (1.6)

2. From P3 and [DR1] we get:

K(a1,K(a2, t1 < t2)) (1.7)

3. From [A3], [DR11], and [DR1] we get:

K(a1,K(a2, clipped (t1, f, t2) ⇔∃ e, t . happens(e, t) ∧
t1 < t < t2 ∧ termindates(e, f, t))) (1.8)
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4. From (8), P4, and [DR15] we conclude that a1 knows that a2 knows that f

has not been clipped between t1 and t2:

K(a1,K(a2,¬clipped (t1, f, t2))) (1.9)

5. From [A2], [DR11], and [DR1] we get:

K(a1,K(a2, [happens(e, t1) ∧ initiates(e, f, t1) ∧
t1 < t2 ∧ ¬clipped (t1, f, t2)] ⇒ holds(f, t2))) (1.10)

6. From (10), premise P2, (6), (7), (9), and [DR17] we get:

K(a1,K(a2, holds(f, t2))) (1.11)

− Method 3: The last method, M3, shows that when (1) it is common knowledge that
t1 is prior to t2; (2) an agent a1 knows that an agent a2 knows that a fluent f holds
at t1; and (3) a1 believes that nothing happened between t1 and t2 that would cause
a2 to believe that f no longer holds; then a1 believes that a2 believes that f holds at
t2:

1. The starting premises are:

P1: C(t1 < t2);

P2: K(a1,K(a2, holds(f, t1)));

P3:
B(a1,¬∃ e, t . B(a2, happens(e, t)) ∧ B(a2, t1 < t < t2) ∧

B(a2, terminates(e, f, t))).

2. From premise P2, [DR5], and [DR12], we get:

B(a1,B(a2, holds(f, t1))) (1.12)

3. From [A6], [DR3], and universal specialization we get:

[B(a1,B(a2, holds(f, t1))) ∧B(a1,¬∃ e, t . B(a2, happens(e, t)) ∧
B(a2, t1 < t < t2) ∧

B(a2, terminates(e, f, t)))] ⇒B(a1,¬B(a2, clipped(t1, f, t2))) (1.13)

4. By P3, (13), (12), conjunction introduction, and modus ponens, we get:

B(a1,¬B(a2, clipped (t1, f, t2))) (1.14)

5. From [A5], [DR11], and [DR2] we get:

K(a1, [B(a2, holds(f, t1)) ∧ B(a2, t1 < t2) ∧
¬B(a2, clipped(t1, f, t2))] ⇒B(a2, f)) (1.15)
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6. From (15) and [DR5] we get:

B(a1, [B(a2, holds(f, t1)) ∧ B(a2, t1 < t2) ∧
¬B(a2, clipped (t1, f, t2))] ⇒B(a2, holds(f, t2)) (1.16)

7. From P1, [DR1], [DR5], and [DR12] we get:

B(a1,B(a2, t1 < t2)) (1.17)

8. From (16), (12), (17), (14), and [DR19] we get:

B(a1,B(a2, holds(f, t2))) (1.18)

The correct conclusion for the false-belief task, produced by our implementation in a
fraction of a second, is now obtained in the following manner:

1. Method M1 fires, invoked with Alice, Bob, the action type

places(cookie , cabinet),

and time point beginning .

2. Axiom [D1] is repeatedly instantiated (via [DR11]) with Bob, cookie , and cabinet .

3. Method M2 fires, invoked with Alice, Bob, the action that Bob has placed the
cookie in the cabinet, the fluent that the cookie is located in the cabinet, and
the two time points beginning and departure.

4. Method M3 fires, invoked with Alice, Bob, the fluent that the cookie is located
in the cabinet, and the two time points departure and return.

5 Embedding the Calculus in First-Order Logic

Despite their significantly greater expressivity and modeling power, systems com-
bining modal operators and quantification are often met with resistance from AI re-
searchers on the grounds that reasoning in them is hopelessly inefficient. As we men-
tioned in the introduction, one of our chief aims is to provide an expressive formal
framework for the rigorous modeling and analysis of interesting cognitive phenomena
involving the propositional attitudes, so for our purposes the lack of automation is
not a vitiating factor. Nevertheless, the problem is obviously of crucial importance,
particularly insofar as such a framework is to be used by artificial agents in order to in-
terpret, predict, or influence the behavior of other agents. We have already suggested
one avenue for achieving a certain degree of automation, namely, the introduction of
specialized reasoning methods. When a sufficiently large number of such methods are
available concurrently, as demons running on a highly parallel architecture, it is plau-
sible that reasoning of the kind that is required for the false-belief task can be carried
out efficiently. In this section we sketch out an alternative approach to automating
reasoning in our framework.
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It is worth emphasizing from the outset that theoretically efficient reasoning does
not seem possible even for propositional logic (on the assumption that P �= NP). In
practice, however, there are reasoning systems that perform fairly well even in the case
of first-order logic. In particular, resolution-based automated theorem provers (ATPs)
such as Vampire[20] and Spass[22] have made significant progress over the last decade,
and it is not unreasonable to hope that ATP technology will continue to improve. In
fact, first-order logic has long been an attractive option for AI researchers working on
propositional-attitude systems, because the language of first-order logic is “the lin-
gua franca of knowledge representation,” and because “there is good theorem-proving
technology for this language”[14, p. 2]. Accordingly, several researchers have tried to
formalize intensional logics in first-order logic by taking a so-called “syntactic” ap-
proach, whereby an intensional propositional operator (such as knowledge or belief)
becomes a first-order predicate symbol that takes as an argument a term denoting a
proposition. However, naive syntactic formalizations of first-order intensional logics
in classical first-order logic using devices for quotation and unquotation are prone to
inconsistency, as was shown by R. Montague[13], R. Thomason[19], and others. While
J. des Rivières and H. J. Levesque[9] have shown how to avoid such inconsistency by
essentially restricting the range over which sentence variables range in the various
intensional axiom schemas (a result that was later somewhat extended[14]), the exer-
cise, when carried out in unsorted first-order logic, is still delicate and faces certain
difficulties. These difficulties can be avoided by deploying a sort discipline to impose
a sharp separation between object language and metalanguage, thus precluding the
type of self-reference that is familiar from the liar paradox and which ultimately leads
to the aforementioned inconsistency results. (This kind of separation between object-
and meta-language, of course, was pioneered by Tarski precisely in order to avert the
type of self-reference responsible for the truth paradoxes.)

In the remainder of this section we will pursue this kind of syntactic route. Due
to the explicit separation between object- and meta-language, our effort will have
to be a bit more involved than the usual syntactic approaches—we will encode the
entire proof system for our original intensional system. Nevertheless, we will stay
entirely within classical first-order logic, which means that the various powerful ATPs
mentioned above will be available for reasoning in the encoded system. This suggests
a two-tiered use of our framework. For purposes of modeling and analysis, we can use
the original implementation, which is properly intensional in that the various modal
operators are directly applied to sentences. For purposes of automated reasoning, we
can resort to the encoded system in multi-sorted first-order logic and help ourselves to
available ATPs. Translating a specific problem description to the encoded system can
be performed automatically. The encoding given below is carried out in Athena[2],
an interactive theorem-proving system for multi-sorted first-order-logic that comes
integrated with both Vampire and Spass. A brief presentation of Athena’s syntax
and semantics can be found elsewhere [4, ch. 2].

To facilitate the task, we will encode a sequent-calculus presentation of our sys-
tem, rather than a natural-deduction version of it, since derivation in sequent calculi
is easier to formalize. The transcription of the inference rules of Section 2 in sequent
form is straightforward. Sample sequent rules are shown in Fig. 2. The substitution
operation P [x �→ t] is partial, defined only when variable capture does not occur, in
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which case P [x �→ t] denotes the proposition obtained from P by replacing every free
occurrence of variable x by the term t. We start by introducing appropriate syntactic
domains for variables, terms, and propositions. Athena provides the built-in domain
Ide (for “identifiers”) as a generic variable category, precisely in order to facilitate
the representation of formal systems. Typical identifiers are strings prefixed by ’,
e.g., ’x and ’foo:

Figure 2. Sample inference rules for a sequent-based version of the system of Section 2

>(exists ?x (= ?x ’foo ))

Proposition : ( exists ?x:Ide

(= ?x ’foo ))

Thus, assuming a domain Symbol for function symbols such as action and clipped , we
can readily encode terms as follows:

(datatype Term

(Var Ide )

(App Symbol ( List-Of Term )))

This simply says that a term is either a variable (an application of the constructor
Var to an identifier), or else a function application of a function symbol to a list of
terms. Thus, the term happens(e,t), where e and t are variables, is represented by
the following:

(App happens (Cons (Var ’e) (Cons (Var ’t) Nil))),

where Cons and Nil are the two constructors of the polymorphic datatype constructor
List-Of. A substitution operation is declared as follows:
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(declare sub (- > ( Ide Term Term ) Term ))

The intended meaning is that (sub ?x ?t ?s) is the term obtained from ?s by
replacing every occurrence of ?x by ?t. It is convenient to have a version that can
operate on an entire list of terms:

(declare subLst (->( Ide Term(List-Of Term ))( List-Of Term )))

The two functions are defined by the following four universally quantified identities:

(define sub-axiom-1

( f o ra l l ?x ?t

(= ( sub ?x ?t (Var ?x)) ?t)))

(define sub-axiom-2

( f o ra l l ?x ?t ?f ? terms

(= ( sub ?x ?t (App ?f ? terms ))

(App ?f ( subLst ?x ?t ? terms )))))

(define subLst-axiom-1

( f o ra l l ?x ?t

(= ( subLst ?x ?t Nil ) Nil )))

(define subLst-axiom-2

( f o ra l l ?x ?t ?s ? rest

(= ( subLst ?x ?t ( Cons ?s ? rest))

(Cons ( sub ?x ?t ?s)

(subLst ?x ?t ? rest )))))

(assert sub-axiom-1 sub-axiom-2 subLst-axiom-1 subLst-axiom-2)

Sorts are introduced as elements of a datatype:

(datatype Sort

ObjectSort

AgentSort

...

FluentSort )

We introduce a sort function from Symbol to sort signatures:

(declare symbol-sort (->( Symbol )( Pair-Of (List-Of Sort)Sort )))

and a function term-has-sort and predicate prop-well-sorted for performing sort
(type) checking on terms and propositions, respectively. We omit the details here,
which are not complicated.5) Given a domain of Agents, propositions are defined as
follows:

(domain Agent )

(datatype Prop

(atom Term)

(neg Prop)

(conj Prop Prop)

(disj Prop Prop)

(cond Prop Prop)

(for-every Ide Prop)

5) Note, however, that sort checking here needs to be done with respect to a sort context, i.e., a
mapping from symbols to sorts, since variables are not explicitly annotated with their sorts.
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(for-some Ide Prop)

(common Prop)

(sees Agent Prop)

(believes Agent Prop)

(knows Agent Prop ))

This directly mirrors the structure of the proposition grammar shown in Fig.1 (except
that there are no explicit sort annotations for quantified variables). The formalization
of matters involving free variables is standard; we present a small sample:

(declare occurs (- > ( Ide Term) Boolean ))

(declare occursLst (- > ( Ide ( List-Of Term )) Boolean ))

(define occurs-axiom-1

( f o ra l l ?x ?y

( i f f ( occurs ?x (Var ?y))

(= ?x ?y))))

(define occurs-axiom-2

( f o ra l l ?x ?f ? terms

( i f f ( occurs ?x (App ?f ? terms ))

(occursLst ?x ? terms ))))

(define occursLst-axiom-1

( f o ra l l ?x

(not ( occursLst ?x Nil ))))

(define occursLst-axiom-2

( f o ra l l ?x ?t ? rest

( i f f ( occursLst ?x (Cons ?t ?rest ))

(or ( occurs ?x ?t)

(occursLst ?x ? rest )))))

(declare occursFree (->( Ide Prop)Boolean ))

(declare occursFreeLst (->( Ide(List-Of Prop)) Boolean ))

(define occursFree-atom-axiom

( f o ra l l ?x ?t

( i f f ( occursFree ?x ( atom ?t))

(occurs ?x ?t))))

(define occursFree-conj-axiom

( f o ra l l ?x ?p ?q

( i f f ( occursFree ?x ( conj ?p ?q))

(or ( occursFree ?x ?p)

(occursFree ?x ?q)))))

(define occursFree-all-axiom

( f o ra l l ?x ?y ?p

( i f f ( occursFree ?x ( for-every ?y ?p))

(and ( occursFree ?x ?p)

(not (= ?x ?y))))))

A sequent is formalized as pair of a list of propositions (the context) and a single
proposition (the conclusion):

(declare sequent (- > (( List-Of Prop) Prop) Boolean ))
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Finally, the inference rules of the system (figure 2) are captured by straightforward
axioms. We demonstrate with conjunction introduction, universal generalization, and
the truth requirement on knowledge:
(define conj-intro

( f o ra l l ? Gamma ?p ?q

( i f (and ( sequent ? Gamma ?p)

(sequent ? Gamma ?q))

(sequent ? Gamma ( conj ?p ?q)))))

(define ugen

( f o ra l l ? Gamma ?x ?p

( i f (and ( sequent ? Gamma ?p)

(not ( occursFreeLst ?x ? Gamma )))

(sequent ? Gamma ( for-every ?x ?p)))))

(define R4-sequent

( f o ra l l ? Gamma ?a ?p

( i f ( sequent ? Gamma ( knows ?a ?p))

(sequent ? Gamma ?p))))

Now let p be any proposition in the original intensional system, and let p̂ be the
Athena term of sort Prop denoting its translation into the first-order theory T we
have specified here. (The translation is trivial, requiring no more than linear time in
the size of p.) Then, to derive a proposition p from a set of propositions {p1, . . . , pn}
in the original system, it suffices to derive the sequent

[p̂1, . . . , p̂n] � p̂ (1.19)

from the theory T (where T contains all the definitions we have given above, and
axioms such as conj-intro and ugen, describing the behaviors of the inference rules
of the intensional system). Since (19) is a first-order formula and the theory T is
also a set of first-order formulas, the latter problem is amenable to classical first-
order techniques and ATP systems. Moreover, special-purpose proof methods can be
programmed in Athena to further aid the automation of reasoning in this system.

6 Related Work and Conclusions

We have presented a formal system for representing and reasoning about certain
important kinds of mental states, and used it to provide a formal analysis of false-
belief tasks. Such tasks have been extensively discussed, particularly in the debate
between theory-theory and simulation[7], but there are few rigorous models to be
found. The only computational treatments of which we are aware are by Bello, Bignoli,
and Cassimatis[5]; and by Watt[21]. Neither is based on a formal inference system.
Goodman et al.[12] present a rational analysis of false belief reasoning based on causal
Bayesian models.

Technically, our system is a multi-sorted multi-modal first-order logic. There
is a growing recognition of the importance of quantification in epistemic contexts.
Propositional multi-modal logics are just not sufficiently expressive. For instance, they
cannot capture the difference between de dicto and de re knowledge. The versatility
of first-order logic is necessary, alongside constructs such as common knowledge.

Our approach has been thoroughly proof-theoretic; we have not given a model-
theoretic semantics for our logic. Coming up with an appropriate formal semantics for
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propositional attitudes is exceedingly difficult, and should not hold back experimen-
tation with and implementation of various proof systems. The usual possible-world
semantics[11] are mathematically elegant and well-understood, and they can be a
useful tool in certain situations (e.g., in security protocol analysis). But they are no-
toriously implausible from a cognitive viewpoint. (Indeed, knowledge, belief, desire,
intention, provability, etc., all receive the exact same formal analysis in possible-world
semantics.) In an apt assessment of the situation, Anderson[1] wrote that epistemic
logic “has been a pretty bleak affair.” Fagin et al.[11] describe various attempts to
deal with some of the problems arising in a possible-worlds setting, none of which has
been widely accepted as satisfactory.

At any rate, even in the standard Kripke framework, the question of how to com-
bine quantification with epistemic constructs (particularly with common knowledge)
is a difficult open problem: there have been no complete recursive axiomatizations,
and indeed such logics are not even recursively enumerable[24]. Some decidable frag-
ments have been investigated, such as the space of monodic formulas[18], but such
restrictions limit expressivity, which in our view is a more important consideration.
Indeed, we see no reason to insist on a computationally tractable—or even decidable—
formalism, or on a complete logic, at the expense of expressivity. First-order logic is
undecidable, but it is routinely used for the analysis and verification of a wide variety
of extensional systems, by deploying interactive theorem-proving systems. Higher-
order logic is both undecidable and incomplete, but it too is used widely for similar
purposes. Things need not be different when it comes to the representation, analysis,
and verification of rational agents. Our concern here has been to design and imple-
ment a fairly expressive logic that can be readily used for such purposes; and to gain
experience with constructing machine-checkable proofs in that logic, and particularly
with writing powerful proof tactics in it.

LORA[25] is a multi-sorted language that extends first-order branching-time tem-
poral logic with modal constructs for beliefs, desires, and intentions (drawing on the
seminal work of Cohen and Levesque[6], and particularly on the BDI paradigm that
followed it[16]), as well as a dynamic logic for representing and reasoning about ac-
tions. It does not have any constructs for perception or for common knowledge, and
does not allow for the representation of events that are not actions. Its semantics for
the propositional attitudes are standard Kripke semantics, with the possible worlds
being themselves branching time structures. We are not aware of any implementations
of LORA.

CASL (Cognitive Agents Specification Language)[17] is another system which
combines an action theory, defined in terms of the situation calculus, with modal
operators for belief, desire, and intention. Like LORA, CASL does not have any
constructs for perception or for group knowledge (shared, distributed, or common).
Also like LORA, the semantics of all intensional operators in CASL are given in terms
of standard possible worlds. They are, in fact, explicitly defined in the higher-order
logic PVS[15] by quantifying over states. Insofar as both LORA and CASL base their
treatment of intensional operators on Kripke structures, they inherit all the conceptual
difficulties associated with them. An advantage of CASL from our viewpoint is that
it is implemented and allows for mechanized proofs, given in PVS. However, PVS is
not readily programmable, and the use of sequents complicates the formulation of
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tactics. The natural deduction style of our framework is more conducive to that task.
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