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Abstract Many of the current software systems rely on garbage collectors for automatic

memory management. This is also the case for various software systems in real-time appli-

cations. However, a real-time application often requires an incremental working style of the

underlying garbage collection, which renders the garbage collector more complex and less

trustworthy. We present a formal verification of the Yuasa incremental garbage collector

in Hoare-style logic. The specification and proof of the collector are built on a concrete

machine model and cover detailed behaviors of the collector which may lead to safety prob-

lems but are often ignored in high-level verifications. The work is fully implemented with

the Coq proof assistant and can be packed as foundational proof-carrying-code packages.

Our work makes an important step toward providing high-assurance garbage collection for

mission-critical real-time systems.
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1 Introduction

Many of the current software systems rely on garbage collectors for automatic
memory management. This is also the case for various software systems in real-time
applications. By using garbage collectors, there is no more need for explicit memory
de-allocation in programs, which greatly improves the safety of these programs by
reducing the possibility of memory leak and other memory-related bugs.

However, for a garbage-collected software system, its safety depends heavily on
the correct implementation of the underlying garbage collector. Bugs in the collector
may lead to unexpected memory leak, or even corruption of important user data in
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the system. Unfortunately, garbage collectors often employ very complex algorithms
and are hard to be implemented correctly. The situation is even worse for real-time
systems, in which the process of garbage collection is interleaved with the execution
of the user program to guarantee real-time properties. This kind of incremental
garbage collectors must maintain intricate invariants and impose subtle restrictions
on the behavior of the user program, in order to prevent garbage collection from
being disrupted. Many incremental algorithms[1−7] have been proposed and some
were reported to contain bugs[2]. In fact, as we will show in a later section, a large
class of incremental algorithms are incorrect to be used directly in real-world settings.

For mission-critical real-time systems, safety and reliability are commonly consid-
ered as the most important issues. Thus it is very important to provide high-assurance
incremental garbage collection for these systems.

Proof-carrying code (PCC)[8] is a promising technique for building verified soft-
ware for mission-critical applications. In the PCC style, programs are verified as
machine-level implementations. And a verified software system contains not only the
executable code, but also a machine-checkable proof saying that the code will run
safely. Safety is thus ensured by checking the proof before running the corresponding
program. Besides the original proposal for safe distribution of application-level mobile
code, PCC-style verification has also been applied to system-level software[9, 10], so
that the whole software stack can be linked as verified machine code.

The aim of our work is to verify incremental garbage collectors in the PCC-
style. And with the proof-carrying collectors, garbage-collected software systems can
then be built as fully verified PCC packages to improve the safety and reliability of
mission-critical real-time applications.

In this paper, we present the verification of the Yuasa incremental garbage collec-
tor in a Hoare-style PCC framework, the Stack-based Certified Assembly Programming
(SCAP) system[11] with embedded separation-logic[12] primitives. The verification en-
sures that the collector always preserves the heap objects reachable by the mutator.
Some of the specification constructs follow our previous work on verifying a stop-
the-world mark-sweep collector[13]. And our model of mutator-collector interaction,
which is the basis of the collector-side verification, is based on the work by McCreight
et al.[14]. Building on the existing work, this paper makes the following new contri-
butions:

• As far as we know, our work is the first to successfully verify an incremental
mark-sweep garbage collector in Hoare-style PCC framework. Though there is
extensive work on high-level verification (mostly model checking) of incremental
garbage collection algorithms[15−20], none of them is able to explore the low-level
behaviors of the collector on the concrete machine model. On the other hand,
we verify the collector as directly runnable assembly code, rather than some
abstract algorithm. Thus our specification and proof of the collector are built
on a concrete machine model and cover many detailed behaviors of the collector
which would otherwise be ignored in high-level verifications. This makes our
verification more trustworthy and useful for building proof-carrying software
system with real-time garbage collection.

• We formalize the Yuasa collector’s heap invariant (based on the weak tricolor
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invariant[21]) using separation logic, and prove the important properties about
this invariant. The heap invariant describes the detailed restrictions on the
object heap and structures that are crucial for the correct executions of col-
lector routines. It is well known that an incremental collector on a sequential
model corresponds to a concurrent collector on the shared-memory multipro-
cessor model[7]. So, the formalization of the heap invariant may also be used in
the verification of concurrent collectors 1 based on the weak tricolor invariant.

• Our work is fully implemented in the Coq proof assistant[22], and the verified
collector can be shipped immediately as foundational-PCC (FPCC)[23] pack-
ages. Following the ideas in[24], the verification of the collector can easily be
ported into an open-FPCC framework[25] and link with other verifications. Be-
sides, building proofs mechanically makes our verification more rigorous and
trustworthy than the paper-and-pencil proofs.

The rest of the paper is organized as follows: in Section 2, we discuss the the basic
assumptions of our verification and the general issues of real-time garbage collection.
Then, we present the collector we verified in Section 3. In Section 4, we present the
formalization of the collector’s heap invariant built with the weak tricolor invariant.
The specification and proof of the collector are discussed in Section 5, and our Coq
implementation is briefly evaluated in Section 6. In Section 7, we present a discussion
of the related work as well as a comparison with our past research. Finally, we draw
a conclusion in Section 8.

Note that since all the lemmas mentioned in this paper are mechanically proved
in Coq, their detailed proofs are skipped here. Readers who are interested in may
find them in our Coq implementation[26].

2 Real-Time Garbage Collection

In real-time applications, whenever control is transferred to a garbage collector
routine, it must return to the mutator within a bounded time span. That is, each
delay imposed by the collector must be shorter than a small constant value. In the
traditional stop-the-world collectors, a collector routine has to traverse the whole
heap to collect unused objects[7], which may cause an intolerable interruption to the
mutator. Similarly, although generational collectors can effectively shorten a garbage
collection interrupt in average cases, they cannot guarantee their performance in the
worst cases and thus are also not suitable for real-time applications[7]. The only
solution is to make garbage collection incrementally. That is, a garbage collection
cycle is broken into pieces and every time the collector gets control, it does only a
small amount of collection and returns control to the mutator.

During an incremental garbage collection cycle, the mutator operations may
break the invariant maintained by the collector and cause the collector to falsely
collect the accessible data. Thus, it is important to make clear the model of mutator-
collector interaction and the possible set of mutator operations before we dive into
the verification of the collector.

1However, to verify a real-world concurrent collector, one may have to deal with fine-grained con-

currency, weak memory mode and other intricate problems, which makes the task much harder than

the verification described here.
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2.1 Mutator-Collector interaction model

Our model of mutator-collector interaction follows the one in Ref.[14]. We define
the root set of the collection as the pointers stored in a set of registers (root registers).
We also adopt a simple accurate setting, where all non-pointer values are separated
from object pointers by a test bit. And an object is accessible, or reachable, in the
object heap, only if it can be visited with a chain of heap load operations starting
from a pointer in the root set.

The interaction between the mutator and collector is modelled as function call/
return. As shown in Fig.1, the mutator calls the corresponding barriers for heap
accesses and object allocation, and the barriers make sure that these operations pre-
serve the invariant of the collector. It is also obvious that if the mutator is able to
manipulate the root registers arbitrarily (e.g. doing pointer arithmetics), there will
be no chance for an incremental collector to work correctly. Thus, we follow Ref.[14]
to restrict the mutator operations on root registers exactly as the following:

• root registers can be copied to other root registers;

• non-pointer values can be moved to root registers;

• field values of the heap object pointed to by a root register can be loaded to
root registers;

• return value of an allocation is stored to a root register.

Following these restrictions, it is trivially provable that the mutator operations pre-
serve the collector’s invariant between each call to the barriers based on the ideas
in Ref.[14].

Mutator

Collector
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barrier allocation
read

barrier

collector’s invariant
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Figure 1. Mutator-Collection interaction

A general framework is proposed in Ref.[14] to verify the mutator in a restricted
abstract view as well as the collector in a concrete view of state, and links them
together to form a fully verified system. In the rest of this paper, we will mainly focus
on the verification of the collector itself with consideration of the mutator-collector
model described here. Putting the verified collector into the general framework will
not be a hard task based on our previous experience on a stop-the-world mark-sweep
collector[14], and we leave this to our future work.
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2.2 Incremental collectors

We now discuss the various incremental collectors and explain our choice of ver-
ifying the Yuasa collector based on our mutator-collector interaction model.

For an incremental copying collector[5, 6], every heap load instruction in the mu-
tator must be substituted by a read barrier, which imposes great overhead. On the
other hand, non-copying mark-sweep collectors[1−4] only require write barriers, and
are thus much lightweight compared with the copying collectors[7].

An incremental mark-sweep collector is commonly based on the following tricolor
abstraction[2]:

• the allocated objects are in three colors;

• black objects are reachable objects with all fields already examined by the col-
lector, and they will not be visited again;

• gray objects are reachable objects which are scheduled to be examined;

• the rest objects are in white color;

• if there are no more gray objects, the white objects are unreachable and can be
collected.

We show a simple example of the incremental marking process in Fig.2. There
are four consecutive states from 1 to 4, each of which contains a set of roots along
with heap objects A, B and C. The color of the objects changes during the marking
process following the tricolor abstraction.

root1      root2     root3   

1                                                         2                                                                    3                                                                 4    

root1      root2    root3   root1      root2    root3   root1      root2    root3   
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B

C
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C
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write

barrier

trace

Figure 2. Incremental marking

Typically, a write barrier is called when the mutator intends to update an object
field with a value in the register. Besides updating the actual field, the barrier also
changes the color of some related objects to ensure that none of the reachable objects
would be collected mistakenly[21]. For example, in Fig.2, the write barrier does not
only update the first field of object A with the pointer in root3, but also shades the
color of C into gray in state 3.

Based on the behaviors of their write barriers, incremental mark-sweep collectors
are commonly divided into two major classes, namely the incremental-updating collec-
tors and the snapshot-at-beginning collectors[7]. Take Fig.2 as an example again, the
first class of collectors will shade either A or C in state 3, which enables the collectors
to log the heap mutation incrementally. On the other hand, a collector in the second
class will shade the object B in state 3, which ensures that all the objects reachable
at the beginning of a collection cycle will be preserved by the collector.
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However, there is a subtle bug of the incremental-updating collectors when they
are used in our mutator-collector interaction model. This is also noticed by Ref.[27].
As illustrated in Fig.2, if the link from A is the only link that keeps B reachable in
state 1, these series of moves by the mutator and collector will eventually make the
collector falsely collect the root reachable object B (a white object), no matter whether
the barrier shades A or C, since it will not be examined by the collector again and will
remain white at the end of the current marking process. In high-level verifications,
this problem is ignored with the assumption that the root set is unchanged throughout
the collection[2]. But this assumption makes the collector useless in a realistic setting.
The implementations of this class of algorithms, on the other hand, often employ a
final phase for a stop-the-world tracing from the modified root registers[28], or iterate
the marking phase many times[29] to mark the root reachable objects that would
otherwise be collected mistakenly.

This defect of the incremental-updating collectors illustrates again the necessity
of doing verification on a concrete implementation, instead of just the high-level algo-
rithm. It is also the reason why we choose to verify the snapshot-at-beginning-based
Yuasa collector[4]. And as we will show later, the execution of each Yuasa collector
interface routine correctly preserves the objects reachable on its entry state.

3 The Collector Verified

We begin with the heap layout used by the collector we verified in Fig.3. We
assume for simplicity that the size of each heap object is two words. This implies
that our allocator only works with mutators that always require two-word objects.
However, it does not affect the computational power of the LISP-style mutator. We
also assume that all heap objects (including the free objects) reside in a continuous
subheap from ST to ED. And the collector also keeps the mark bits to tell white
objects from colored objects, a mark stack for keeping gray objects and a free list of
unallocated objects.

root

a L b L    nil          c       d

1         0                      1             

free list

fptr

mark bits

bot             top                          buf

mark stack

allocated

objects

Figure 3. Collector’s heap layout

In the original algorithm proposed by Yuasa[4], the user stack is also taken as
part of the root set. However, to simplify the problem, our root set contains only
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/* interface procedures */

alloc() {

count = 0;

if (phase == MARK) mark();

else if (phase == SWEEP) sweep();

else if (fcount < MIN) {

mark_field(root1);

mark_field(root2);

sptr = ST;

phase = MARK;

}

if (fptr == NULL) inf_loop();

ret = fptr;

fptr = fptr->next;

if (ret >= sptr) markbit(ret) = BLACK;

return ret;

}

write(des, fld, newval) {

if (phase == MARK) mark_field(des->fld);

des->fld = newval;

}

\vspace{5pt} \footnotesize \hspace{1em}

\begin{minipage}[l]{0.51\linewidth}

\begin{verbatim}

/* internal procedures */

mark_field(val) {

if (atom(val) || markbit(val) == BLACK)

return;

markbit(val) = BLACK;

stack_push(val);

}

/* internal procedures */

mark() {

while (!stack_empty() &&

count++ < MAX) {

ptr=stack_pop();

mark_field(ptr->first);

mark_field(ptr->second);

}

phase = stack_empty() ? SWEEP : MARK;

}

sweep(){

while (sptr < ED && count++ < MAX)

if (sptr->first == LEAVEME) return;

else if (markbit(sptr) == WHITE) {

sptr->first = fptr;

fptr=sptr;

fcount++;

} else markbit(addr) = WHITE;

phase = (sptr == ED) ? IDLE : SWEEP;

}

inf_loop() { while (1); }

markbit(x) { return (ED+(x-ST)/2); }

stack_push(ptr) {

if (top >= buf) inf_loop();

*(top++)=ptr;

}

stack_pop() { return *(--top); }

stack_empty() { return (bot == top); }

Figure 4. Pseudo code of the Yuasa collector

two registers, but it is not hard to extend the system with more root registers. We
also follow Ref.[14] to have all the atomic (non-pointer) values 31bit encoded. Thus,
atom() in Fig.4 is simply implemented as a parity test.

With the assumptions above, we show our version of the pseudo code of the
Yuasa collector in Fig.4. The interface of the collector contains the two procedures:

• alloc(), performs garbage collection and object allocation.

• write(), the write barrier

The collector also keeps global variables to record the collection state and internal
data structures, which are:

• phase, indicates the status of the collection cycle

• sptr, indicates the object that sweep() is currently working on

• fptr and fcount, the head and length of the free list, respectively

• bot, top and buf, the mark stack pointers

• ST and ED, the heap boundaries
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(State) S ::= (H,R)

(Heap) H ::= {l ; w}∗
(RFile) R ::= {r ; w}∗
(Reg) r ::= {rk}k∈{0...31}

(Wd) w ::= 0 | 1 | 2 | 3 | . . .
(Address) l ::= 0 | 4 | 8 | 12 | . . .
(SPred) p, q ∈ State → Prop

(HPred) A, B ∈ Heap → Prop

Figure 5. Machine state and state assertions

According to the code in Fig.4, alloc() does a small piece of collection before
each allocation. The collection work differs in different phases of collection. This may
be tracing a few reachable objects in mark(), when phase equals to MARK; or sweeping
and collecting some white objects into the free list in sweep(), when phase equals to
SWEEP; or marking the root set, when phase equals to IDLE and the free-object count
is low. The number of objects being processed at each time is bounded by the constant
MAX and the size of the root set. Both mark() and write() calls mark field() to
update the color of an object, that is, change it from white to gray. The first field
of the objects in the free list contains a special constant LEAVEME to keep them from
being swept again in sweep().

4 Invariant Formalization

We formalize the invariant of the collector in Section 3 by using Hoare-style state
assertions with separation-logic primitives. Before presenting the invariant, we firstly
go over some necessary backgrounds for understanding the rest of the paper, which
include the meta-logic framework we use, our model of the machine state, as well as
separation-logic primitives defined on the state model.

4.1 Backgrounds

The work in the rest of this paper is formalized within a mechanized meta-logic,
the Calculus of inductive Constructions (CiC)[30]. CiC is a higher-order predicate
logic extended with inductive definitions. The CiC terms in this paper are written
with standard logic notations. We let Prop be the universe of all logical propositions,
and let Set be the universe of all computational terms.

As shown in Fig.5, we model a machine state S as a pair of heap H and register
file R. A heap H is a partial map from address l (aligns to 4) to word value w. While
a register file R is a map from register r to word value. We write X(z) for the value
bound to z in the map X, and X{z ; v} for the map obtained by updating the
binding of z to v in X. We also write S.R for the register file in state S.

We use CiC directly as our assertion language. Following the Hoare-logic style,
state predicates (p, q) with the type State → Prop are used to assert the program
behavior. And separation-logic primitives (A, B) are embedded into the assertion
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T ∈ Set

l 7→ w
def
= λH. H = {l ; w}

emp
def
= λH. dom(H) = ∅

true
def
= λH. True

A ∗ B
def
= λH. ∃H1,H2.H1 ]H2 = H ∧ (A H1) ∧ (B H2)

∃x : T. A
def
= λH. ∃x : T. (A H)

!(P )
def
= λH. P ∧ (emp H)

∀∗x ∈ ∅. A
def
= emp

∀∗x ∈ {n} ∪ S. A
def
= A[n/x] ∗ ∀∗x ∈ S − n. A

Figure 6. Separation logic primitives

null ::= 0

st, ed ::= 8 | 16 | 24 | . . .
ptrs

def
= {l | (l mod 8 = 0) ∧ (st 6 l < ed)}

vptr(l)
def
= l ∈ ptrs

rchrt((H,R), l)
def
= ∃r ∈ {r1, r2}. reach(H,R(r), l)

vptr(l)

reach(H, l, l)
(refl)

vptr(l) vptr(l′) reach(H, l′′, l′)

H(l) = l′′ ∨H(l + 4) = l′′

reach(H, l, l′)
(next)

Figure 7. Reachability

language as heap predicates with the type Heap → Prop to specify the collector’s
heap manipulation. We shallowly embed these primitives in CiC, as listed in Figure. 6.
The definitions are consistent with the semantics described in Ref.[12]. We write
H ° A if (A H) is a valid proposition in CiC. We also follow the standard separation-
logic abbreviations: l 7→ w1, w2 for l 7→ w1 ∗ l + 4 7→ w2, l 7→ − for ∃x : Nat. l 7→ x,
etc.

With such knowledge, we move on to build the invariant of the collector.

4.2 Reachability

Following the informal definition of reachability in Section 2 and the heap layout
in Fig.3, we give the formal definition of reachability in Fig.7. The lower and upper
boundaries of the collector’s allocatable heap, st and ed, are both aligned to 8, which
is the size of a heap object. A value l is a valid pointer (vptr(l)) only if it is the
address of an allocatable heap object.

The reachability predicate reach(H, l, l′) is inductively defined. In the base case,
a valid pointer is self-reachable. And in the inductive case, l′ is reachable from l if
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(HeapPath) χ ::= [] | l :: χ

head([])
def
= −

head(l :: χ)
def
= l

last([])
def
= −

last(l :: [])
def
= l

last(l :: χ)
def
= head(χ)

heap next(H, l, l′)
def
= H(l) = l′ ∨H(l + 4) = l′

wfpth([],H, W )
def
= true

wfpth(l :: [],H, W )
def
= l ∈ W

wfpth(l :: l′ :: χ′,H, W )
def
= l ∈ W ∧ heap next(H, l, l′) ∧ wfpth(l′ :: χ′,H, W )

white path(H, G, W, l)
def
= ∃χ, lg ∈ G, lw ∈ W.

heap next(H, lg, lw) ∧ wfpth(χ,H, W ) ∧ head(χ) = lw ∧ last(χ) = l

weak tricolor((H,R), B, G, W )
def
= (∀r ∈ {r1, r2}. R(r) ∈ W → white path(H, G, W,R(r))) ∧

(∀lb ∈ B, lw ∈ W. heap next(H, lb, lw) → white path(H, G, W, lw))

Figure 8. Weak tricolor invariant

it is reachable from the pointers in the heap object at l. The predicate rchrt(S, l)
asserts that l points to a root reachable heap object in the state S.

4.3 The weak tricolor invariant

In both the stop-the-world and incremental-updating mark-sweep collectors, the
following invariant, known as the strong tricolor invariant[21], holds during the mark
phase of the collection:

There are no pointers from black objects to white objects.

This invariant guarantees that when the mark phase finishes at a state with no gray
objects, the set of black objects will form a closed subheap with reachable objects,
and the white objects are unreachable and thus can be collected safely.

However, since the Yuasa write barrier never shades the newly written value,
we can easily write a white pointer into a black object and break the strong tricolor
invariant. But the collect still guarantees the property that the black objects form a
closed heap when the mark phase is over. And this is achieved by maintaining a more
intricate invariant, the weak tricolor invariant[21]:

All white objects pointed to by a black object, or stored in a root register,
are reachable from some gray object through a chain of white objects.

Note that in our mutator-collector interaction model, we take mutable registers as
roots, and the invariant is thus slightly different from the one in Ref.[21].

As the most important part of the collector’s invariant, the weak tricolor invariant
is formalized in Fig.8. A heap path χ is inductively defined as a list of addresses.
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ok val(S, w)
def
= atom(w) ∨ w ∈ S

ok fld(S, l)
def
= ∃w. !(ok val(S, w)) ∗ l 7→ w

ok obj(S, l)
def
= ok fld(S, l) ∗ ok fld(S, l + 4)

obj hp(S′, S)
def
= ∀∗x ∈ S. ok obj(S′, x)

flst(l, ∅) def
= !(l = null)

flst(l, {l} ∪ S)
def
= !(l 6= null) ∗ ∃l′. l 7→ leaveme, l′ ∗ flst(l′, S − l)

flist(R, S)
def
= flst(R(rfptr), S)

array set(l, ∅) def
= emp

array set(l, {w} ∪ S)
def
= l 7→ w ∗ array set(l + 4, S − w)

buffer(l, l′)
def
= ∀∗x ∈ {x | x mod 4 = 0 ∧ l 6 x < l′}. x 7→ −

mstk(S, x, y, z)
def
= !(y − x = size(S)) ∗ array set(x, S) ∗ buffer(y, z)

mstack(R, S)
def
= mstk(S,R(rbot),R(rtop),R(rbuf))

hdr(l)
def
= (ed + (l− st)/2)

mbits(S, n)
def
= ∀∗x ∈ S. hdr(x) 7→ n

bmbits(S, l, m, n)
def
= ∀∗x ∈ S. hdr(x) 7→ (if x < l then m else n)

Figure 9. Auxiliary heap definitions

The functions head(χ) and last(χ) return the first and last address on the path χ,
respectively. Note that both head(χ) and last(χ) are undefined when χ is empty. The
predicate heap next(H, l, l′) asserts that there is a pointer from object l to object l′

in H. A heap path χ is well-formed with some pointer set W in heap H (asserted by
wfpth(χ,H,W )) if the objects in χ form a linked list and are all in the set W . Finally,
the definition of the weak tricolor invariant predicate weak tricolor(S, B, G, W ) and
the white path predicate white path(H, G, W, l) follow exactly with their informal
descriptions mentioned earlier.

4.4 Heap components

Following the collector’s heap layout in Fig.3, we formalize the various heap
components of the collector in Fig.9. This part of formalization resembles the work
in Ref.[13], and is only briefly discussed here. Readers who are interested in may find
the detailed explanation in Ref.[13].

The heap predicate obj hp(S′, S) asserts an object heap containing exactly the
objects in set S, and all the pointers stored in it belong to the set S′. So, once
H ° obj hp(S, S) holds, H will be a closed heap with no outgoing pointers. The
relation between obj hp and reach is stated in Lemma 1.

Lemma 1 (Object Heap Reachability).
If H ° obj hp(S, S), l ∈ S, and reach(H, l, l′), then l′ ∈ S.

The heap predicate flist(R, S) asserts a list of free objects in S with the list header
in register rfptr. Similarly, mstack(R, S) asserts a mark stack with objects in S, and
the stack pointers (top, bot and buf) are stored in the corresponding registers. There
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mark ( )

mark ( ) sweep ( )

sweep ( )

alloc ( )

alloc ( )

stack empty                              sptr = ED

fcount < MIN

mark_inv                               sweep_inv                                 idle_inv

Figure 10. Invariant transition

are two predicates for mark bits, where mbits(S, n) asserts that there is a mark bit
n for each member x of S, while bmbits(S, l,m, n) asserts that there are different
headers for objects in S regarding their relative position to the address l.

4.5 Collector’s invariant

With the building blocks defined in Subsections 4.3 and 4.4, we form the global
invariant of the collector in Hoare-style state predicate.

A garbage collection cycle is divided into three phases, namely the mark, sweep
and idle phase. We firstly define for each phase a state invariant that must be satisfied
when entering or exiting a collector routine in that phase. The transition between
these invariants is done by executing the corresponding collector routines, as shown
in Fig.10.

We define the mark phase invariant mark inv in Fig.11, which asserts that in the
mark phase:

1. global object set ptrs is divided into four subsets, in which the allocated objects
are grouped into the sets B, G, and W according to their mark bits and the
content of the mark stack, while the set F contains the objects on the free list;

2. flag register rph and the sweep pointer rsptr are properly set, and the borders
of the object heap are loaded to the corresponding registers (sted ok(R));

3. values in the root registers are either atomic or pointers to the allocated objects
(in the set B ∪G ∪W );

4. weak tricolor invariant holds on the state with the sets B, G and W ;

5. global heap contains all the necessary parts: the object heap, the free list, the
mark bits and the mark stack.

The closed subheap Ht represents the mutator’s view of the heap, which corresponds
to the heap of the abstract state discussed in Ref.[14]. It is also used to show that
each collector routine preserves the reachable objects, as we will discuss in the next
section.

The mark phase finishes with no gray object. And the weak tricolor invariant
guarantees that the black objects form a closed heap, which is the only object heap
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eq(H)
def
= λH′. H′ = H

sted ok(R)
def
= R(rst) = st ∧ R(red) = ed

roots ok(S,R)
def
= ∀r ∈ {r1, r2}. ok val(S,R(r))

mark inv((H,R),Ht)
def
= ∃B, G, W, F. B ∪G ∪W ∪ F = ptrs ∧

R(rph) = mark ∧ R(rsptr) = st ∧ sted ok(R) ∧ roots ok(B ∪G ∪W,R) ∧
weak tricolor((H,R), B, G, W ) ∧
H ° eq(Ht)∗flist(R, F )∗mstack(R, G)∗mbits(B, 1)∗mbits(G, 1)∗mbits(W, 0)∗mbits(F, 0) ∧
Ht ° obj hp(B ∪G ∪W, B ∪G ∪W )

sweep inv((H,R),Ht)
def
= ∃B, W, F. B ∪W ∪ F = ptrs ∧

R(rph) = sweep ∧ R(rsptr) ∈ ptrs ∧ sted ok(R) ∧ roots ok(B,R) ∧
(∀x ∈ W. x ≥ R(rsptr)) ∧
H ° eq(Ht) ∗ obj hp(ptrs, W ) ∗ flist(R, F ) ∗mstack(R, ∅)∗

bmbits(B,R(rsptr), 0, 1) ∗mbits(W, 0) ∗mbits(F, 0) ∧
Ht ° obj hp(B, B)

idle inv((H,R),Ht)
def
= ∃W, F. W ∪ F = ptrs ∧

R(rph) = idle ∧ R(rsptr) = ed ∧ sted ok(R) ∧ roots ok(W,R) ∧
H ° eq(Ht) ∗ flist(R, F ) ∗mstack(R, ∅) ∗mbits(W, 0) ∗mbits(F, 0) ∧
Ht ° obj hp(W, W )

gc inv(S,Ht)
def
= mark inv(S,Ht) ∨ sweep inv(S,Ht) ∨ idle inv(S,Ht)

Figure 11. Collector’s invariant

preserved during the sweep phase. We thus move the white objects out of Ht in the
sweep phase invariant sweep inv, which asserts that:

1. global object set ptrs is divided into the subsets B, W and F , which have the
same meaning as in mark inv;

2. flag register rph is properly set, and the sweep pointer R(rsptr) is a valid object
pointer in ptrs. The heap borders are loaded to the corresponding registers;

3. values in the root registers are either atomic or pointers in the allocated subheap
(in the set B);

4. all objects in W are behind the sweep pointer;

5. global heap contains all the necessary parts: the object heap, the free list, the
mark bits and the mark stack.

The heap predicate bmbits(B,R(rsptr), 0, 1) asserts that the mark bits of the black
objects before the sweep pointer R(rsptr) has already been reset by the collector.

The sweep phase finishes when the sweep pointer reaches the end of the object
heap (R(rsptr) = ed), which ensures that all the white objects are collected (W = ∅).
With this, the system finishes garbage collection and enters the idle phase. The
invariant idle inv of the idle phase reassembles sweep inv, except that the set W is
empty and all the mark bits of objects in B are reset.
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Finally, the global invariant gc inv, which holds at every control transfer between
the mutator and the collector (as shown in Fig.1), is simply the disjunction of the
three cases based on the flag register rph.

5 Specification and Proof of the Collector

Our specification and proof of the collector is constructed within the SCAP
framework[11], which is a Hoare-style logic for modular verification of assembly-level
program with stack-based control abstraction.

We begin this section with a brief introduction to SCAP. Then, we present the
SCAP specifications of the collector’s major procedures and discuss the proof con-
struction issues.

5.1 SCAP

SCAP is an FPCC system where programs are verified as assembly implementa-
tion. The basic units of specification and verification are instruction sequences (aka.
code blocks) ending with jumps. And an SCAP specification of a code block is a pair
of state predicates (p, g) with the types:

(Pre) p ∈ State → Prop

(Guar) g ∈ State → State → Prop

The precondition p resembles the precondition in Hoare logic, while the guarantee g
relates to the entry state of the code block with the return state of the corresponding
procedure. Thus the behavior of a procedure, in terms of state transition, is asserted
by the specification g of its entry block. Note that in the rest of this section, when
we talk about a specification of a particular procedure, we actually mean the SCAP
specification of its entry block.

SCAP employs a set of inference rules for building well-formedness proofs for
code blocks against their specifications. And there are also rules for grouping the
well-formed code blocks into a well-formed program.

The rules are built according to an operational-semantics-based abstract ma-
chine model. And the soundness of SCAP ensures that well-formed program will run
without sticking to the machine model, and each code block, or procedure, functions
according to its specification.

The uncovered details of the machine model and SCAP are not necessarily needed
for understanding the rest of this paper. However, interested readers may refer to
Refs.[11, 13, 14]. Besides, for clarity of presentation in this section and the rest, we
are not going to unfold the collector procedures into their assembly implementations.
Still, readers who have interest should be aware that our proofs[26] are actually built
for the assembly implementation of the collector.

5.2 Collector specifications

We discuss here the SCAP specifications of the collector’s major procedures, as
listed in Fig.12. For the basic procedures like stack operations and mark field(),
their specifications are trivially identical to those used in a stop-the-world collector[13],
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hp sub(H,H′,R)
def
= H ° eq(H′) ∗ true ∧ ∃S. H′ ° obj hp(S, S) ∧ roots ok(S,R)

hp ext(H,H′,R)
def
= H′ ° eq(H) ∗ R(r2) 7→ −,−

reg ok((H,R), (H′,R′)) def
= ∀r ∈ {r1, r2}. R(r) = R′(r)

pmark
def
= λS. ∃Ht. mark inv(S,Ht)

gmark
def
= λS, S′. reg ok(S, S′) ∧

∀Ht. mark inv(S,Ht) → mark inv(S′,Ht) ∨ ∃H′t. hp sub(Ht,H′t, S.R) ∧ sweep inv(S′,H′t)

psweep
def
= λS. ∃Ht. sweep inv(S,Ht)

gsweep
def
= λS, S′. reg ok(S, S′) ∧

∀Ht. sweep inv(S,Ht) → sweep inv(S′,Ht) ∨ idle inv(S′,Ht)

palloc
def
= λS. ∃Ht. gc inv(S,Ht)

galloc
def
= λS, S′. S.R(r1) = S′.R(r1) ∧

∀Ht. gc inv(S,Ht) → ∃H′t,H′′t . gc inv(S′,H′t) ∧ hp sub(Ht,H′′t , S.R) ∧ hp ext(H′′t ,H′t, S′.R)

pwrite(i)
def
= λS. ∃Ht. gc inv(S,Ht)

gwrite(i)
def
= λS, S′. reg ok(S, S′) ∧

∀Ht. gc inv(S,Ht) → gc inv(S′,Ht{S.R(r1) + i ; S.R(r2)})
where i ∈ {0, 4}

Figure 12. Collector specifications

and are thus skipped here. Readers may refer to Ref.[26] for the detailed specifications
of all the code blocks of the collector.

We begin with the auxiliary definitions, and go on to explain the specifications
in Fig.12 one by one.

The predicate hp sub(H,H′,R) asserts that H′ is a closed subheap of H with
root reachable objects; hp ext(H,H′,R) asserts that H′ extents H with exactly one
more object pointed to by R(r2); and reg ok(S,S′) asserts that the root registers are
preserved from S to S′.

5.2.1 Mark

We know from Figs.4 and 10 that the mark() procedure is always invoked in the
mark phase. Thus its precondition pmark only requires that the entry state satisfies
the mark phase invariant mark inv in Fig.11. The guarantee gmark is divided into two
parts. Firstly, the root registers are preserved. Secondly, if the entry state satisfies
mark inv, either mark inv or sweep inv will hold on the return state. Following the
definition of mark inv, the universal quantification of the subheap Ht ensures that all
reachable objects in state S are preserved by the execution of mark().

Lemma 2 (Mark safety).
If gmark (H,R) (H′,R′) and reach(H,R(r), l) for some root register r, then H(l) = H′(l)
and H(l + 4) = H′(l + 4).

Proof sketch:
For each of the two cases in gmark, we are able to find an untouched subheap Hs

satisfying both Hs ° obj hp(S, S) and roots ok(S,R) for some set S. By Lemma 1, we
know that all the reachable objects are untouched.
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We have Ht for the first case, and H′t for the second, following the definition of
mark inv and hp sub. 2

5.2.2 Sweep

The specification of sweep() follows the same idea for mark(). The precondition
psweep only asserts that the sweep phase invariant sweep inv holds. On the other
hand, the guarantee gsweep ensures that the procedure makes correct transition from
sweep inv to either sweep inv or idle inv, while the mutator’s view of the heap (Ht) is
identical in the two states. Like Lemma 2, we also have the safety lemma for sweep().

Lemma 3 (Sweep safety).
If gsweep (H,R) (H′,R′) and reach(H,R(r), l) for some root register r, then
H(l) = H′(l) and H(l + 4) = H′(l + 4).

5.2.3 Alloc and write

The two interface procedures alloc() and write() can be invoked in any phases
and thus require the global invariant gc inv holds on their entry states, as specified by
palloc and pwrite(i). Here i separates the write operations on the first and second field
of an object. On the other hand, both the guarantees galloc and gwrite(i) require that
the corresponding procedures preserve gc inv between their entry and return states.

Besides, the guarantee galloc of alloc() asserts that the mutator’s subheap H′t
in the return state is an extension of a possibly garbage-collected version (H′′t) of the
subheap Ht in the entry state.

Lemma 4 (Alloc safety).
If galloc (H,R) (H′,R′) and reach(H,R(r), l) for some root register r, then
H(l) = H′(l) and H(l + 4) = H′(l + 4).

Proof sketch:
Following the definition of hp sub and hp ext, we apply Lemma 1 with H′′t , and get
the conclusion with the same idea used in the proof of Lemma 2. 2

The guarantee gwrite(i) of the write barrier ensures that the collector’s invariant
still holds even after the mutator changes the content of the object heap Ht, and the
reachable objects, except for the one been written on, are preserved.

Lemma 5 (Write safety).
If gwrite(i) (H,R) (H′,R′), reach(H,R(r), l) for some root register r, and l 6= R(r1),
then H(l) = H′(l) and H(l + 4) = H′(l + 4).

5.2.4 Discussion

The readers may notice that specifications in Fig.12 and Lemmas 2, 3, 4 and 5
mention only the safety of the collector. That is, all reachable objects are preserved.

Incremental collectors are all working in a somehow conservative style[7]. Thus,
it is not possible to prove the correctness property that a successful garbage collection
collects all the unreachable objects, which is enjoyed by stop-the-world collectors[13].

We also skip the proof of the real-time property of the collector, due to the
limitation of the SCAP system. However, a time-based SCAP can be developed for
this purpose, and we leave this to the future research.
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5.3 Proof construction

With the improvements we made to SCAP, and our various tactics and lemma
libraries for reasoning on finite sets and separation logic[13], the effort of proof con-
struction is focused mainly on the domain-specific problems of the collector.

The main difficulty left in building proofs for the Yuasa collector is to show that
the weak tricolor invariant weak tricolor(S, B, G, W ) is preserved by various operations
on the state S as well as the object sets B, G, and W . To tackle this problem,
we analyze the behaviors of the collector routines and form the following important
lemmas on the properties of the white path predicate white path(H, G, W, l), which
is the key component in the definition of weak tricolor(S, B, G, W ).

In the loop body of the mark() procedure, as shown in Figure. 4, the white
objects pointed to by object ptr is moved to the gray set before ptr joins the black
set. Meanwhile, the mark stack and mark bits are also changed to keep consistent
with the colors of the objects. We have Lemmas 6 and 7 for these operations.

Lemma 6 states that, first, moving objects from white to gray preserves the white
path, and second, it is correct to move an object out of gray if both its fields contain
atomic value or pointers to non-white objects.

Lemma 6 (White path move).
If l ∈ W/{x} and white path(H, G, W, l), then:
1. white path(H, G ∪ {x},W/{x}, l);
2. y /∈ W , m ∈ G and H ° m 7→ y, x ∗ true implies

white path(H, (G/{m}) ∪ {x},W/{x}, l);
Proof sketch:
By unfolding the definition of white path we get the existentially quantified path χ

and the gray head of the path h.
We consider two cases for the first conclusion:

Case 1: If x is on the path χ, we break χ at x and form the new white path with x

being its gray head.
Case 2: The conclusion is trivially proved by induction on χ, if x is not on χ.

For the second conclusion, we have to consider the additional case when m equals
h, and the rest proof follows the one for the first conclusion. 2

Lemma 7 states the fact that modifications on other heap components do not
disrupt the properties of the white path.

Lemma 7 (White path subheap).
If H ° eq(Ht) ∗A, H′ ° eq(Ht) ∗B, Ht ° obj hp(S, S), and white path(H, G, W, l),
where G and W are disjoint subsets of S, then white path(H′, G, W, l).

Proof sketch:
By unfolding the definition of white path and induction on the existentially quantified
path χ. 2

Note that Lemma 7 is also used to show that the allocation operation in alloc()
preserves the white path invariant.

The write barrier write() stores a new value into an object field and shades
the old field value gray. And Lemma 8 ensures that no matter the old value is
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Lines Component

962 Basic properties and tactics

1387 Ordered heap library

451 Abstract machine encoding and lemmas

1209 Ordered finite set library

910 Separation logic library

547 SCAP, VCGen and related tactics

471 Collector’s heap definitions and lemmas

932 Weak tricolor invariant

2554 Code, specification and proof of the collector

9423 Total

Figure 13. Proof script breakdown

originally white or not, the white path property is preserved with some corresponding
modifications to the white and gray sets.

Lemma 8 (White path update).
If H(m + i) = x and white path(H, G, W, l), where G and W are disjoint object pointer
sets and m is an object pointer, then:
1. x /∈ W implies white path(H{m + i ; y}, G, W, l);
2. x ∈ W and l ∈ W/{x} implies

white path(H{m + i ; y}, G ∪ {x},W/{x}, l).
where i ∈ {0, 4}.

Proof sketch:
The first conclusion is proved by induction on the χ packed in the premise
white path(H, G, W, l).

For the second conclusion, we perform case analysis on whether x is on χ or not,
which follows the idea used in the proof of Lemma 6. 2

With the help of these lemmas, the main SCAP well-formedness theorems of the
collector routines can be constructed with much less efforts.

6 Coq Implementation

Our work is fully implemented within the Coq proof assistant. In our Coq proofs,
we do not assume any axioms except the Law of Excluded Middle, which is also
removable by following the ordered set model in Ref.[14]. All the proofs are machine-
checkable and the implementation can be packed immediately as FPCC packages.

Coq[22] is an interactive proof assistant based on a sound meta-logic, the CiC
system. Following the Curry-Howard isomorphism[31], theorem proving in Coq is
actually a constructive process for building terms with certain types. On the other
hand, proof checking in Coq, which relies only on the simple type-checker of CiC, is
trustworthy compared with other theorem provers like PVS, and is thus suitable for
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code development in the FPCC style. Besides, Coq also provides strong facilities for
building inductive definitions and induction-based proofs, which are very important
for our work.

Our implementation includes both the construction of the verification framework
and the verification of the collector. For the first part, we build the machine model,
SCAP and its soundness proof, the VCGen and various lemma libraries. And the
second part includes the basic constructs of the mark-sweep GC specifications, the
Yuasa collector invariant and the codes and proofs of the collector’s assembly-level
implementation. In Fig.13, we show the script size of our implementation in terms
of non-empty non-commented lines of Coq script. The script includes the definitions,
lemmas, theorems and their proofs as lists of tactics. The implementation takes
several man-months for programmers familiar with the Coq system.

Compared with the implementation in Ref.[13], it has cost us notable effort to
build the weak tricolor invariant and prove its various properties, which are the most
intricate parts of this work. The proofs of these lemmas, especially the ones in Sub-
section 5.3, often require detailed analysis for various subtle cases, and proving by
induction is also frequently encountered. The code complexity of the Yuasa collec-
tor also imposes non-trivial increment of difficulty on the proof construction process
compared with[13]. For example, the proof of the alloc() procedure must reflect the
fact that the code is correct to run in any of the mark, sweep and idle phase of the
collection, with different phase invariants.

The Coq code of our implementation is freely available through the Internet[26].
Interested readers may also refer to Ref.[13] for some details of the implementation
of the verification framework, which is skipped here.

7 Related Work

The existing work on mechanized verification of garbage collectors (such as Refs.
[15-20]) mainly focuses on abstract algorithms. Our certified collector, on the other
hand, is a real machine-level implementation with concrete specifications and it can
run directly on real machine. Verifying the collector against concrete specifications
makes us focus on those subtle details of the collector which may lead to safety
problems but are often ignored in a high-level verification. However, our verification
only addresses the safety of the collector, not any liveness properties, such as the
real-time property of the collector. Besides, we also benefit a lot from the ideas of
these high-level verifications.

The work of Birkedal et al.[32] uses separation logic with a variety of new construc-
tors to prove the correctness of a copying collector. Many of our ideas on formalizing
the concrete heap model come from their work. Hawblitzel et al.[33] proposed a linear
type system for type-checking the assembly implementation of a copying collector.
However, the type system is very complex and has no mechanized soundness proof.
Our FPCC-style verification is thus more trustworthy than theirs.

McCreight et al.[14] proposed a general framework for certifying collectors and
their mutators. Within this framework, the verification of the mutators and collectors
can be done separately according to a common abstraction, and then linked together
with a set of cast lemmas. We follow their mutator-collector interaction model and
the style for composing collector specifications. Our verification of the incremental
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mark-sweep collector is also a good supplement to their work.
The work on CAP systems[34, 35, 11, 25] provides a good way to build FPCC

packages. Our work builds on the SCAP system in Ref.[11] and can be ported to the
OCAP system[25] to interact with mutators verified in other verification systems.

We proved the correctness of a conservative variant of the stop-the-word mark-
sweep collector[13] and linked it with a foundational typed assembly language system[24]

before. These are very useful experiences for the work described in this paper. On the
other hand, the work in this paper also contains non-trivial increment and is different
from the work in Ref.[13]. Our main focus is on formalizing and reasoning the weak
tricolor invariant, which is much more complex than the invariant used in Ref.[13].
The comparison of the implementation efforts is discussed in Section 6.

8 Conclusion

We present in this paper the verification of the Yuasa incremental garbage collec-
tor in a Hoare-style PCC framework. We take a realistic mutator-collector interaction
model as the basis of our verification. And the collector specifications are given on
the machine-level state model using separation logic. Our verification is fully imple-
mented in the Coq proof assistant, and can be packed immediately as FPCC packages.
This work can be used as a model for building garbage-collected real-time PCC-style
software systems. Besides, our formalization of the collector’s invariant can also be
used in the Hoare-style verification of concurrent mark-sweep collectors.
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