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Abstract Co-clustering treats a data matrix in a symmetric fashion that a partitioning of
rows can induce a partitioning of columns, and vice versa. It has been shown advantageous
over tradition clustering. However, the computational complexity of most co-clustering al-
gorithms are costly, and thus limit their effectiveness on large datasets. A recently proposed
sampling-based matrix decomposition method can achieve a linear computational complex-
ity, but selected rows and columns can not effectively represent a large sparse dataset, and
many unselected rows and columns can not be mapped to the selected rows and columns
because they do not share features in common, thus its performance is impaired. To ad-
dress this problem, we propose a fast co-clustering framework by ranking and sampling that
only representative samples are selected for co-clustering, and the remaining samples can
be easily labeled by their neighbors in clustered samples. Extensive experiments on large
text datasets show that our approach is able to use very few samples to achieve compara-
ble results in linear time compared to state-of-the-art co-clustering algorithms of nonlinear
computational complexity.
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1 Introduction

Clustering analysis is an unsupervised learning that divides similar objects into
groups. In a vector space model, where a dataset is formatted as a matrix, most clus-
tering algorithms are conducted in one-way clustering, i.e., each column is an object,
data objects are then partitioned based on a similarity measure computed across all
the rows. More often than not, simultaneously clustering the rows and columns of
a data matrix is required to discover the association between row and column clus-
ters. For example, in recommendation systems, we are interested in finding which
group of people is more attracted to a certain group of items, and which group of
items is frequently purchased by a certain group of people. By exploiting the du-
ality between rows and columns, co-clustering is fully utilized to deal with sparse
and high-dimensional data in many real applications, such as co-clustering the words-
documents in text mining!® 7, the genes-experiments in gene expressions!?® and the

reviewers-movies in recommendation systems![!3].
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Many co-clustering algorithms based on different models have been proposed. A
bipartite graph was used in spectral co-clustering to find minimum cut vertex parti-
tions of text datal8!. K-means co-clustering with the objective of minimizing the sum-
squared residues was exploited to gene expression datal®. In Refs. [10,11], authors
proposed an informational theoretic co-clustering that aims to maximize mutual infor-
mation between the clustered entries in a data matrix. Block value decomposition!!9],
an extension of nonnegative matrix factorization!'®17 was adopted to find the indica-
tor matrices of row and column clusters respectively. Among all these algorithms, the
optimization problem of spectral co-clustering is reduced to find a desired partition on
one dimensional data that makes it computationally fast, but spectral co-clustering
can not deal with different numbers of row and column clusters because the rows and
columns are not separated in the process of partitioning. Meanwhile, given an input
data matrix consisting of m rows and n columns, and desired numbers of row and
column clusters, k and [, respectively, the computational complexity of the rest of
algorithms is O(t(k + l)mn), where t is the number of iterations. Thus the overhead
of these algorithms is very costly, especially on large datasets where m and n are over
tens of thousands. In addition, these methods require the whole data be held in the
main memory, which further limits their applications when large memory is hardly
available. Recently, a fast co-clustering method based on column and row decompo-
sition (CRD) was proposed to decrease the computational cost!'®. CRD generates
a subset of the rows and columns of the data matrix using sampling-based matrix
decomposition. Only the selected rows and columns are then co-clustered alterna-
tively, and the rest of rows and columns are labeled by their nearest neighbors during
each iteration according to the values obtained in the row and column decomposi-
tion. Although this method uses some constraints to ensure the qualification of the
sampling-based matrix decomposition and a correct mapping between the selected
rows/columns and the unselected rows/columns, it can not provide a good selection
of samples. For example, the selected samples come from fewer classes than the de-
sired number of classes. As a result, co-clustering these samples can not produce a
correct partition. Also, a large number of unselected samples are unlabeled, i.e, the
corresponding values used to map unselected samples to selected ones are zeros.

In this paper, we propose a fast co-clustering framework by ranking and sampling
(CRS) to address these problems. The goal of CRS is developing a fast co-clustering
algorithm of linear time complexity to achieve comparable results. The key point is
how to find those representative samples in order to cover the remaining unselected
samples, because we argue that each representative sample is close to the center of
its class that the other samples in the class are related to. The CRS framework is
conducted by two stages. First, determine the importance of samples based on an
appropriate ranking measure, and then select a subset of top-ranked samples. By
doing so, the important samples are kept as candidate samples and the problem
of finding representative samples is downsized; Second, discriminatively select the
representative samples in order to cover as many unselected samples as possible. This
is done by combining the ranking of the candidate samples, i.e, iteratively select the
sample of the highest ranking value in the current subset of the candidate samples,
and remove its neighbors. The samples selected by CRS are more representative that
most of the remaining samples can find their labeled neighbors. Experiments show
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that CRS can achieve comparable results with very few samples to other algorithms
in terms of purity, but with a much less computational cost.

The rest of the paper is organized as follows. First, related work is reviewed.
Second, we introduce our proposed algorithm with a detailed analysis. Experiments
are conducted on several large datasets to evaluate the effectiveness of our algorithm
against other co-clustering algorithms with illustrated results. Finally, a brief conclu-
sion is given in Section 5.

2 Background

In CRD, a fast co-clustering framework utilizing sampling-based matrix decom-
position (CUR)!2:2% for large datasets was proposed. Given an input data matrix M,
the numbers of rows and columns to select, m’ and n’, CUR generates three matrices
to approximate M € R™*" i.e.,

M%Bc-BU'BR (21)

where Be € R™*" and Br € R™ *™ consist of weighted columns and rows randomly
selected from M with a probability in proportional to their norms, respectively, and
By is computed based on Be and Br. CUR is a compressed approximate decomposi-
tion of a large matrix, but not designed for clustering rows and columns of the matrix
simultaneously. In order to make CUR suitable for the purpose of co-clustering, CRD
approximately produces two matrices for both rows and columns, i.e.,

M =~ WR . MR (2.2)
M ~ MC . WC

where Mp € R™*" and Mc € R™*" are a set of rows and columns without weights
respectively; Wg € gmxm’ ig g mapping between selected and unselected rows, and
We € RV > is a mapping between selected and unselected columns. CRD modifies
CUR to find a qualified low-rank row and column decomposition based on some
constraints to guarantee a good mapping, because CUR produces several different
low-rank decompositions for a given data matrix. CRD is conducted using an iterative
single side clustering approach!*®, which either keeps the row clusters fixed and re-
clusters the columns or keeps the column clusters fixed and re-clusters the rows. In
CRD framework, K-means and informational theoretic co-clustering algorithms are
used. Compared to other co-clustering algorithms, CRD only re-clusters the selected
rows and columns, and maps the unselected rows and columns based on Wx and W,
respectively. The computational complexity of the CRD algorithm is claimed to be
O(t(km/n+In'm+m'm+n/n) + (m+n)m'n’). However, CRD inherits the property
of CUR that sampled rows and columns are selected with a probability, thus they are
not necessarily from all different classes of the data. Moreover, because CRD can not
effectively deal with large sparse data, there are several rows and columns of all zero
entries in Wg and W, respectively. In other words, many rows and columns can not
find their labeled neighbors. However, in the iterative single side clustering approach
the labels of all rows and columns are required.
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3 Co-clustering by Ranking and Sampling (CRS)

Given a dataset of several classes, each class should have at least one representa-
tive or centered sample that other samples are associated with. It is difficult to find
all of those representative samples. However, we can determine the importance of
each sample, and then discriminatively select those candidate samples that possibly
represent different classes for the purpose of co-clustering. Another benefit of taking
advantage of determining the importance of each sample is that we can remove less
important samples to reduce the size of data for the sampling process. Thus, we
introduce a fast co-clustering algorithm by ranking and sampling for this regard.

3.1 Ranking and sampling

In fact, those representatives samples can be obtained by ranking their impor-
tance among all samples. For example, in graph theory the adjacency matrix of a set
of nodes defines the linking structure on which several algorithms are applied to get
the ranking of all nodes. Two popular ranking algorithms, PageRank™®! and hyper-
text induced topics search (HITS)*3], are theoretically well studied in the literature
of link analysis. General speaking, a link from node A to node B denotes a type of
endorsement, for instance, considering B an authority on a subject. Link analysis is
used to assign an authority value for each node in a connected direct graph. With the
intuition that good authorities are usually pointed by good authorities, Pagerank is a
probability distribution that a random selected web page follows a random outgoing
link with a probability of «, and jumps to a random web page with a probability of
1 — . It has been utilized in social network analysis with a huge success. On the
other hand, by using hubs and authorities to define a recursive relationship between
web pages, HITS exploits the idea, with a slight difference, that good hubs point to
good authorities and good authorities are pointed by good hubs. The HITS algorithm
is in fact a power-method eigenvector computation. Given a data matrix M € R™*",
we can compute the values for authority nodes z and the values for hub nodes y as

follows:
=MT
v Y (3.3)
y=Mz.
Substituting these two equations we get
z=M"Mz
(3.4)
y=MMTy.

x and y can be solved by finding eigenvectors for MTM and MMT, for example,
given M = USVT,

MTM =VSTUTUSvT = v(STS) VT (35)
MMT =USVTvSTUT = U(SsTyuT '

where STS is a diagonal matrix with the eigenvalues. Thus,  and y are the first
vectors of left and right matrices V' and U, respectively, i.e., the first eigenvectors of
MTM and MMT.
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To rank both rows and columns of M, PageRank usually needs a computational
complexity of O(m?+n?) while that of HITS is m?n+4O(m)+n?m+0(n), because,
according to Equation 3.5, MTM and M M7 only need to be calculated once, and
O(m) or O(n) for per eigenvectorl. However, it is noted that if we assume that rows
only take hub values, and columns only take authority values, = and y can be directly
obtained from the first left and right eigenvectors, U; and Vi, since M = U SVT.
Thus, the computational complexity is reduced to O(m+n). It is worthy noting that
Uy and V7 may consist of mixed values (negative and nonnegative). To get correct
rankings of rows and columns, we need to get the absolute values of U; and V7. After
obtaining the rankings of rows and columns, we can obtain these samples, each of
which has the ranking value above the average ranking value of the samples, as the
candidate samples. By doing so, most important samples are kept, and the size of
samples to select is significantly reduced.

Provided with the rankings of both rows and columns of a data matrix, to get a
certain number of representative samples , we can choose the top-ranked samples in
the candidate set and remove some of their nearest neighbors since the samples are
more likely from the same class of their nearest neighbors. It is noted that sorting
the ranking of all samples at the beginning is not necessary since some nearest neigh-
bors will be deleted. Thus our algorithm can be conducted by iteratively choosing
the sample of the highest ranking value in the current candidate set and deleting a
fixed number of its nearest neighbors until a certain number of samples are selected.
Ideally, if the data is evenly distributed, all representative samples in each class can
be selected. Our ranking and sampling algorithm for rows/columns is described in
Algorithm 1.

Algorithm 1 Ranking and sampling for co-clustering

Input: An input matrix M € R™*" m’ rows and n’ columns to select.
Output: Selected lists of rows and columns, R and C.
Method:

Calculate the first left and right eigenvectors, |U;| and |V4], as the row and column

rankings, respectively, and the average ranking value of |U;| and |V4].

Put all row or column samples in L, and delete the sample in I whose ranking

value is lower than the average ranking value.

while |R| < m/ or |C| < n' do
Choose the sample s of the highest ranking value in L, and add it to {R} or {C}.
Compute the distance vector between s and {L — s} based on Euclidean distance.
Delete |(|L|/m')| or |(|L|/n’)| nearest neighbors of s from {L}.

end while

3.2 A framework of co-clustering by ranking and sampling

A framework of co-clustering by ranking and sampling (CRS) is illustrated in
Fig. 1. Assuming the size of candidate row/column samples in L is reduced to
m” /n'" after removing the less important samples. Then the size of the candidate
samples is gradually downsized by m” /m’ or n”/n’. The computational complexity
of the ranking and sampling algorithm is mn+ (m'4+1)m”n/2+ (n’+1)n" /24+O(m+

n+m”m’ +n'"n’), in which mn is used to calculate the norms of all row and column
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Input: Data matrix Mp
Number of rows / columns to select, m’, n’
Number of rows / columns clusters, k, 1.

1

(1) Ranking: M= USV" Output: Co-clustering for all
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Rows / columns Ranking,
Uy=U(1,)), V= V(1,:).
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An updated row clustering
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Me=M(:,C) Bt for each row in Mg
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(8) Single side column clustering
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(4) Randomlyinitialize af,a% for each
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in M using Spand o’
!
(6) Single side row clustering on An updated row clustering,
MRbasedon of;, 3! oyt for each row in My

Figure 1. A framework of co-clustering by ranking and sampling

vectors; (m' + 1)m”'n/2 + (n' + 1)n” /2 is for computing the row and column dis-
tance vectors; O(m + n) accounts for computing the first left and right eigenvectors;
O(m+n+m'"m’ +n"n') is for selecting representative samples and removing their
nearest neighbors. In our design, we adopt the same iterative single side cluster-
ing approach as used in Ref. [16]. The computational complexity of iterative single
side clustering approach is O(¢(km/n + In'm)). After co-clustering sampled rows/-
columns, row/column cluster labels are mapped to all rows/columns, we get the corre-
lation between unselected and selected samples by calculating their similarity matrices
Sp=MxM(R,:)T and S¢ = M7T % M(:,C). This is done once by using a runtime of
m/m + n/n. This simple mapping can not guarantee no unlabeled samples, however,
the more samples being chosen, the less unlabeled samples. We will show that in our
method it is useful even selecting very few samples. CRD considers re-sampling which
is infrequently happened as reported in Ref. [16] to get a better selection when neces-
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sary. In this paper, we do not consider re-sampling. The computational complexity of
CRD without re-sampling is mn+m'm+n'n+ O((m+n)m'n’) + O(t(km/n +in'm))
while that of CRS is mn + m/m + n'n 4+ (m' + 1)m” " n/2 + (n' + 1)n" /2 + O(m +
n—+m’m' +n"n")+ O(t(km'n 4+ In'm)), where m” is the size of the initial candidate
samples, each of which has ranking value higher than the average ranking value of
all samples. It is much smaller than the original size of all samples. In practice,
we could use different criteria to get a smaller m” in order to further decrease the
computational cost. Generally, m’ and n’, the numbers of samples to select, are very
small and can be considered as constants. Therefore, the CRS framework achieves an
execution linear time since m’ < m”, and n’ < n”.

4 Experiments

4.1 Datasets

In this section, we conduct our experiments on 6 large text datasets from the
CLUTO toolkit! to evaluate the performance of CRS with other co-clustering al-
gorithms in terms of running time and purity. They were obtained from a variety
of sources. The hitech and reviews datasets were derived from the San Jose Mer-
cury newspaper articles that were used in the TREC collection?. The Lal2 and
Sports datasets were extracted from the articles of the Los Angeles Times contained
in TREC collections. the Ng3sim dataset was 3 overlapping groups about politics
(talk.politics.misc, talk.politics.guns and talk.politics.mideast) extracted from the 20
Newsgroups?; the K1b dataset was obtained from the WebACE project, a subset of
news articles from Reuters®. All these databases associated with the toolkit were al-
ready preprocessed21.
were further removed, and each data matrix was normalized. This toolkit provides a
good representation of different characteristics which are summarized in Table 1.

Moreover, those words that appear in two or fewer documents

Table 1 Description of the document datasets

Dataset #Words #Documents #Classes
Hitech 10080 2301 6
Klb 11715 2340 6
Ng3sim 15810 2998 3
Reviews 18483 4069 5
Lal2 20009 6279 6
Sports 14870 8580 7

4.2 Measurements

In our experiments, each document dataset is represented by a term-document
matrix. Since we do not have class labels for rows (terms), the evaluation of clus-
tering quality is conducted on columns (documents). We use purity and runtime to
evaluate the quality of all algorithms in this paper. Purity gives the average ratio of

! http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
2 http://trec.nist.gov/data.html

3 http://people.csail.mit.edu/jrennie/20Newsgroups/

4 http://trec.nist.gov/data/reuters/reuters.html
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a dominating class in each cluster according to the cluster size and is defined as:

. 1
Purity = N ; mﬁx(\km Nenl), (4.6)

where N is the size of samples, {k1, ko, -+, ky} is the set of clusters, and {c1,¢a, -+,
¢m} is the set of classes. Higher values of the purity indicate better clustering.

4.8 Performance evaluation

We also use the information theoretical co-clustering (ITC) and k-means co-
clustering (KCC) algorithms for iterative single side clustering!*®l. Therefore, 7 al-
gorithms are considered: CRD-KCC, CRD-KCC, CRS-ITC, CRS-KCC, ITC, KCC,
and BVD. For sampling based methods, CRD and CRS, as discussed before, it is
possible to have unselected samples unlabeled. For those unlabeled samples, they
can be randomly labeled for simplicity. All algorithms were implemented in Matlab
R2010b on a 4 dual-processor, dual-core (Opteron 2220) IBM x3455s, with 6GB of
ram. All results were gathered by 50 independent trails. Meanwhile, no more than
200 iterations was allowed when they failed to converge at a stopping criterion.

First, we evaluate the CRD and CRS algorithms with different numbers of sam-
ples on all datasets. We varied the number of selected rows/columns from 10 to
50. The purity comparison with error-bar is shown in Fig. 2, and the runtime com-
parison is illustrated in Fig. 3. Generally, CRS-KCC and CRS-ITC outperform
CRD-KCC and CRD-ITC by average improvement of 26.4% and 48.6%, respectively,
on all datasets. Increasing the number of selected rows/columns can also improve the
purity of the CRS-ITC algorithm. However, it affects the CRS-KCC algorithm. The
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Figure 2. Purity comparison with different numbers of samples on all datasets
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reason is that when a sample is selected a certain number of its nearest neighbors
are deleted based on Euclidean distance. The number of the neighbors to delete is
decided by the number of samples to select. Therefore, the more sample selected, the
less neighbors deleted, thus less discriminative the selected samples are in terms of
Euclidean distance used in the KCC algorithm. As for runtime comparison, compared
to CRD-ITC, the runtime of CRS-KCC and CRS-ITC are slightly increased, and
very close to CRD-ITC. However, the runtime of CRD-KCC grows rapidly when
increasing the number of samples. As discussed before, the size of candidate samples,
m”, could affect runtime. In fact, on average, approximately 25%/45% rows/columns
are selected as candidate samples.

To compare all algorithms, we need to choose the number of rows/columns for
sampling based algorithms. Since the maximum number of classes among all datasets
is 7 on the Sports dataset. For the CRD algorithms we use the default setting as
reported in Ref. [16]: 20 rows/columns are selected, and for our CRS algorithms, 10
rows/columns are sufficient based on the performance illustrated above. The purity
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and runtime comparisons are illustrated in Fig. 4 and Fig. 5, respectively. For runtime
comparison, because the co-clustering algorithms without performing sampling use
significant runtime we take the common logarithm with base 10 in order to reduce
wide-ranging quantities to smaller scopes. As shown in the Fig. 4, CRS outperforms
CRD in both KCC and ITC algorithms on all datasets. It is also worthy noting that,
on datasets Hitech and Sports, CRS-KCC and CRS-ITC outperform the KCC, ITC,
and BVD algorithms, and on other datasets the results are very comparable. However,
as reported in Fig. 5, the runtime of the CRS is orders of magnitude faster than
other co-clustering algorithms without performing sampling. In our experiments the
runtime of CRS on all datasets is no more than 5 seconds. Both CRD and CRS achieve
the computational complexity of linear time, however CRS prevails over CRD because
CRS obtains a better selection of representative samples, and in contrasted to CRD
most unselected samples are well mapped to selected samples. Since in each dataset
the number of rows is way more than the number of columns, In our experiments we
found that CRD had approximately 20% column samples and 60% row samples not
mapped. However, in our method CRS, there is almost no unlabeled column samples
samples(only 3 unlabeled column occurred on the dataset Ngs3sim) and very few
row samples unlabeled. Therefore we argue that ranking and discriminative sampling
are very efficient in finding representative samples and mapping unselected samples,
thus lead to a significant improvement of clustering performance for sampling based

algorithms.
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Figure 4. Purity comparison on all datasets
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Figure 5. Runtime(Logl0) comparison on all datasets

5 Conclusions

In this paper, we have introduced a fast co-clustering approach based on ranking
and sampling (CRS) with the aim of developing a fast and efficient co-clustering
algorithm. Ranking is used for determining the importance of samples, and sampling
is for discriminatively selecting representative samples for the purpose of co-clustering.
Using the idea of the HITS algorithm, we could assign each row of a data matrix
a hub value and each column an authority value to rank both columns and rows,
which can be done in linear time by computing the first left and right eigenvectors.
Based on the rankings of rows and columns, more important samples are selected
as candidate samples, on which the sampling strategy is conducted by iteratively
choosing the sample of the highest ranking value from the candidate samples and
removing its nearest neighbors until a certain number of samples are chosen. This
discriminative sampling efficiently obtains those representative samples that most
unselected samples can find labeled neighbors from the selected samples. The CRS
algorithms also achieve a linear runtime, but more importantly, CRS outperforms
CRD even using fewer samples than CRD. Meanwhile, CRS is very comparable to
other co-clustering algorithms without performing the sampling strategy that are very
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costly in time and space.
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