
Int J Software Informatics, Volume 7, Issue 3 (2013), pp. 391–405 Tel: +86-10-62661040

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c©2013 by ISCAS. All rights reserved. Email: ijsi@iscas.ac.cn, ijsi2007@gmail.com

Manifold Ranking using Hessian Energy

Ziyu Guan1,2, Jinye Peng1, and Shulong Tan3

1(College of Information and Technology, Northwest University of China, Xi’an, China)

2(Dept. of Computer Science, University of California at Santa Barbara, Santa Barbara, USA)
3(College of Computer Science, Zhejiang University, Hangzhou, China)

Abstract In recent years, learning on manifolds has attracted much attention in the

academia community. The idea that the distribution of real-life data forms a low

dimensional manifold embedded in the ambient space works quite well in practice, with

applications such as ranking, dimensionality reduction, semi-supervised learning and

clustering. This paper focuses on ranking on manifolds. Traditional manifold ranking

methods try to learn a ranking function that varies smoothly along the data manifold by

using a Laplacian regularizer. However, the Laplacian regularization suffers from the issue

that the solution is biased towards constant functions. In this work, we propose using

second-order Hessian energy as regularization for manifold ranking. Hessian energy

overcomes the above issue by only penalizing accelerated variation of the ranking function

along the geodesics of the data manifold. We also develop a manifold ranking framework

for general graphs/hypergraphs for which we do not have an original feature space (i.e. the

ambient space). We evaluate our ranking method on the COREL image dataset and a rich

media dataset crawled from Last.fm. The experimental results indicate that our manifold

ranking method is effective and outperforms traditional graph Laplacian based ranking

method.
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1 Introduction

Recently, learning on manifolds has attracted much attention from different
research communities, e.g. machine learning, computer vision and information
retrieval. The idea that real-life data generally lies on a low dimensional manifold
embedded in the ambient space works quite well in practice, with applications such
as ranking[22], dimensionality reduction[10], semi-supervised learning[1] and cluste-
ring[20].

Ranking is a fundamental problem in many research fields, such as information
retrieval and data mining. A ranking problem can be abstracted as follows: given a
query, we want to find a real valued function f which ranks the data instances
according to their relevance to the query. For two data instances xi and xj , if xi is
more relevant to the query, an ideal ranking function should give f(xi) > f(xj). A
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major challenge in real-life ranking problems is that the dimensionality of the data
is often very high, which generally leads to the so-called “curse of dimensionality”
problem[9], i.e. the volume of the feature space grows so fast that the available data
becomes very sparse. This sparsity is problematic for any method that requires
statistical significance. Recently, manifold learning has gained increasing attention
and the intuition that real-life high dimensional data may have a lower dimensional
intrinsic geometric structure has showed promising performance in ranking
problems[21,22,8]. In this work we focus on manifold-based ranking.

Most manifold ranking methods are based on a Laplacian regularization
framework[22,23]. Specifically, they exploit the discrete Laplace operator on a
similarity graph (i.e. graph Laplacian) among data instances, in order to learn a
ranking function which varies smoothly along the manifold. The similarity graph,
which can be regarded as an approximation of the data manifold, is usually
constructed in a k-Nearest-Neighbor (kNN) manner. This regularization framework
has shown promising performance on various data types, such as image[8], text[21]

and even complex rich media relational data[6,19]. The Laplacian-based ranking
methods can also be interpreted as spreading from query nodes the ranking scores
on the graph iteratively until a stationary distribution is achieved, with a nice
connection with the PageRank algorithm[17,22]. However, a recent theoretical
study[11] showed that the Laplacian regularizer is biased towards constant functions,
which could potentially blur the ranking results.

In this paper, we propose a novel manifold ranking framework called
Hessian-Ranking which makes use of the second-order Hessian energy[11] to design
the regularization functional on the data manifold. Unlike the Laplacian regularizer,
the Hessian regularizer favors functions which vary linearly along the geodesics of
the data manifold. In order words, linearity means that the output value of a
function changes linearly with respect to geodesic distances on the manifold. This
property makes the Hessian energy particularly suitable for ranking, since in ranking
problems our goal is to differentiate data instances in terms of their relevance to the
query instance. Intuitively, the relevance should be inversely proportional to the
geodesic distances of the corresponding data instances to the query instance.

Our contributions are as follows: (1) we incorporate the Hessian energy into
manifold ranking problems and demonstrate its effectiveness empirically; (2) we
systematically develop a manifold ranking framework which can handle not only
data represented by vectors in a Euclidean space but also general graph data
(without coordinates for each node) and even hypergraphs; (3) we evaluate our
ranking framework by two real-life ranking problems, content based image retrieval
(CBIR) with the COREL dataset and music recommendation with a rich media
relational dataset crawled from Last.fm. The experimental results indicate our
ranking framework is effective and outperforms the traditional Laplacian-regularized
ranking method.

The rest of the paper is organized as follows. In Section 2, we review the Laplacian
regularized manifold ranking method and also give a brief introduction to Hessian
energy. The proposed Hessian regularized ranking framework is presented in Section
3. In Section 4, we apply the proposed ranking framework on two real-life ranking
problems, image retrieval and music recommendation in social media data, and show
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the experimental results. Finally, Section 5 concludes our work.

2 Background

In this section, we first provide a review of the Laplacian-based manifold ranking
method and discuss its properties. Then we present some background knowledge of
the Hessian energy which will be used later as a regularizer in our ranking framework.
We denote by M the m-dimensional data manifold embedded in Rn, and use X and
X to denote a data instance and the set of all data instances, respectively. Let d = |X |
be the number of instances. In the follow, we use upper case letters in bold face to
denote matrices and lower case letters in bold face to denote vectors.

2.1 Laplacian-regularized manifold ranking

Manifold ranking models are usually formulated in a regularized empirical error
minimization framework:

arg min
f∈C∞(M)

l∑

i=1

(Yi − f(Xi))2 + λS(f), (1)

where f is the ranking function that we want to learn, C∞(M) is the set of infinitely
differentiable functions on M and S(f) is the regularizer. The summation term is the
least square error incurred by query instances (typically l = 1 and y = 1). It means
that the ranking scores of query instances are forced to stick to their respective labels.
The ranking scores of the remaining instances are controlled by S(f). Equation (1)
assumes that we have the complete data manifold. However, in practice we only have
a sample of the data. Let W be the similarity matrix corresponding to the affinity
graph G among all data instances constructed by connecting k nearest neighbors for
each node (i.e. data instance):

Wij =





sim(Xi, Xj), if Xi is among the k nearest neighbors of Xj ,

or Xj is among the k nearest neighbors of Xi

0, otherwise

. (2)

The Laplacian regularizer imposes a smooth constraint for the ranking function f on
the affinity graph G

S∆(f) = fT Lf =
1
2

∑

i,j

Wij(f(Xi)− f(Xj))2, (3)

where f is the vector of function values for all data instances and L is the Laplacian
matrix defined as L = D − W (D is a diagonal matrix with Dii =

∑
j Wij). In

practice, a normalized version L̃ = I − D−1/2WD−1/2 often generates better
results[22]. Equation (3) indicates that if two data instances are similar, they should
have similar ranking scores. Actually, the continuous analogue of the Laplacian
regularizer is intrinsically trying to minimize the integration of the squared norm of
f ’s gradient vector field over data manifold M

S∆(f) =
∫

M
‖∇f‖2dV (x) =

∫

M
f(∆f)dV (x) = 〈f,∆f〉, (4)
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where ∆ =
∑m

i=1
∂2f
∂x2

i
is the Laplace operator and dV (x) is the natural volume

element[13]. As we can easily verify, constant ranking functions are the most
“smooth” ones and incur a zero cost for S∆(f).

2.2 Hessian energy

For a real-valued function f , the Hessian energy is defined as

SHess(f) =
∫

M
‖∇a∇bf‖2T∗xM⊗T∗xMdV (x), (5)

where ∇a∇bf is the second covariant derivative of f on M. Note that the Hessian
energy is by definition independent of the coordinate representation and depends only
on the properties of M. However, supposing we know the local normal coordinate
system of M centered at point p, the second covariant derivative of f can be written
in terms of the dual basis of the tangent space at p:

∇a∇bf

∣∣∣∣
p

=
m∑

r,s=1

∂2f

∂xr∂xs

∣∣∣∣
p

dxr
a ⊗ dxs

b. (6)

Hence, the norm of the second covariant derivative of f at p is simply the Frobenius
norm of the Hessian matrix of f at p

‖∇a∇bf‖2T∗pM⊗T∗pM =
m∑

r,s=1

(
∂2f

∂xr∂xs

∣∣∣∣
p

)2

. (7)

Unlike the Laplacian regularizer, the Hessian regularizer tries to minimize the
integration of the squared norm of f ’s second order covariant derivative over M.
This means if f varies linearly with respect to the geodesics of M, it will not be
penalized by the Hessian regularizer. Formally speaking, for any geodesic function
γ : (−ε, ε) → M parameterized by arc length s, we have ∂

∂sf (γ(s)) = constant[5].
This property is desirable in the ranking setting. Intuitively, the relevance of a data
instance to the query instance should decrease linearly with respect to its geodesic
distance to the query on the data manifold.

3 Manifold Ranking by Hessian Energy

In this section, we present our manifold ranking framework based on Hessian
energy. Firstly, we discuss how to do ranking for data represented by vectors in
a Euclidean space, which means we have a vector representation for X . We then
show our solution for general graph/hypergraph data where we do not have a vector
representation for the data.

3.1 Hessian ranking for vector data

In real-life applications, we do not have the complete view of the data manifold
M, but only have a sample from M, i.e. X . Therefore, we need to approximate the
Hessian energy from the data sample. In order to estimate the Hessian regularizer
of f , we need to first estimate the local structure of the data manifold, i.e. the local
tangent space TXM centered at each data instance (point) X. After we obtain the
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estimates of local normal coordinates, the Hessian energy can then be estimated by
Eq. (7).

The local structure of M at Xi can be estimated from its k nearest neighbors
Nk(Xi) (including Xi itself). When the sampled data is dense enough, the k nearest
neighbors of a data point can provide a reasonable estimate of the local structure. In
order to estimate the local tangent space TXi

M of Xi, we perform PCA on Nk(Xi)
and treat the m leading eigenvectors {ur}m

r=1 as the basis of the tangent space[11]. The
data points in Nk(Xi) are then centered at Xi and projected onto the basis vectors.

After obtaining the local normal coordinates for each data point in Nk(Xi), the
next step is to estimate the Hessian of f at each point Xi which can be approximated
as follows

∂2f

∂xr∂xs

∣∣∣∣
Xi

≈
k∑

j=1

H
(i)
rsjf(Xj), (8)

where H is an operator we need to derive which establishes the relationship between
function values and their second order derivatives. H can be computed by fitting
the second-order Taylor expansion of f at each point Xi. In particular, for each
Xj ∈ Nk(Xi), we have

f(Xj) = f(Xi) +
m∑

r=1

Brxr(Xj) +
m∑

r=1

m∑
s=r

Arsxr(Xj)xs(Xj), (9)

where xr(Xj) represents the r-th coordinate of Xj in the local normal coordinate
system of Xi and Br and Ars correspond to the first order and second order derivatives
of f at Xi respectively

Br =
∂f

∂xr

∣∣∣∣
Xi

, Arr =
1
2

∂2f

∂x2
r

∣∣∣∣
Xi

, Ars =
∂2f

∂xr∂xs

∣∣∣∣
Xi

. (10)

To fit the above polynomial we use standard linear least squares,

arg min
w∈RP

‖f (i) − f(Xi)e−Φw‖2, (11)

where f (i) is a k × 1 vector containing function values of data instances in Nk(Xi), e
is a k × 1 vector with all elements equal to 1 and Φ ∈ Rk×P represents the design
matrix with P = m + m(m+1)

2 . The j-th row of Φ are the monomials for Xj , i.e.
[x1(Xj), . . . , xm(Xj), x1(Xj)x1(Xj), . . . , xm(Xj)xm(Xj)]. Since this optimization
problem is convex, its solution can be easily obtained by differentiating the objective
function with respect to w and setting the derivative to 0:

2ΦT (f(Xi)e− f (i)) + 2ΦT Φw = 0 ⇒ w =
(
ΦT Φ

)−1
ΦT (f (i) − f(Xi)e). (12)

The last m(m+1)
2 components of w correspond to the coefficients Ars in Eq. (9).

According to Eq. (10) and Eq. (8) we obtain the operator H. Consequently, the
Forbenius norm of the Hessian of f at Xi can be estimated as

‖∇a∇bf
∣∣
Xi
‖2
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≈
m∑

r,s=1




k∑

j=1

H
(i)
rsjf(Xj)




2

=
k∑

j,h=1

f(Xj)f(Xh)B(i)
jh =

(
f (i)

)T

B(i)f (i), (13)

where B
(i)
jh =

∑m
r,s=1 H

(i)
rsjH

(i)
rsh. Finally, the estimate of the Hessian energy SHess(f)

is simply the sum of local Hessian over all data instances:

SHess(f)

≈
d∑

i=1

m∑
r,s=1

(
∂2f

∂xr∂xs

∣∣∣∣
Xi

)2

=
d∑

i=1

∑

j∈Nk(Xi)

∑

h∈Nk(Xi)

f(Xj)f(Xh)B(i)
jh = fT Bf , (14)

where B is the matrix that sums up the B(i)’s for all data instances.
After we obtain the estimate of the Hessian energy, the final objective function

of Hessian Ranking is designed similarly as that of Laplacian-regularized manifold
ranking

arg min
f∈Rd

(y − f)T Iq(y − f) + λfT Bf , (15)

where Iq is a diagonal matrix with (i, i)-th element equal to 1 if i is a query and zero
otherwise, and y is the query label vector. Differentiating the objective function with
respect to f and set the derivative to zero, we get the following linear system

(Iq + λB)f = y (16)

Since B is usually sparse[11], this linear system can be solved efficiently by using the
left division operator in MATLAB. Once f is computed, we can rank data instances
by their corresponding scores in f .

3.2 Hessian ranking for graph data

In the last subsection, we show how to do Hessian Ranking when the data has an
original feature space (Euclidean space). Nevertheless, in many real world settings,
we only have the relational information between data, i.e. graphs. For example, in a
social tagging service we have the relationships between users, tags and resources, but
not their feature representations[6,7]. Furthermore, some relationships are triplets or
even higher order ones which are modeled by hypergraphs[19]. Here we discuss how
to implement Hessian Ranking in the general graph/hypergraph settings.

In order to estimate the Hessian energy, we need to estimate the local structure
of the data manifold. However, without a feature representation, we cannot apply
PCA in local neighborhoods to estimate the local tangent spaces. We can treat edges
in a graph as representing the affinity relationships between the corresponding nodes.
Therefore, the graph can be viewed as an approximation of the data manifold, just
as the similarity graph in the graph Laplacian case. Then our goal is to learn a
representation for nodes in the graph which best reflects the geometric structure of
the data manifold approximated by the graph. In other words, the goal is to learn a
Euclidean space which best preserves the local structure of the manifold.

Let us first consider a normal undirected graph G. Let W be the weighted
adjacency matrix for G. Let qi be the Euclidean representation for Xi that we want
to derive and Q ∈ Rd×k be the matrix that contains all qi’s as row vectors. The
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central idea is that if two instances are similar, they should be near to each other in
the learned space:

arg min
Q∈Rd×k

1
2

∑

i,j

Wij ‖qi − qj‖2 , (17)

With simple transformations, we can write Eq. (17) as

1
2

∑

i,j

Wij ‖qi − qj‖2 =
1
2

∑

i,j

Wij

(
qT

i qi + qT
j qj − 2qT

i qj

)

=
∑

i

‖qi‖2De(i)−
∑

i,j

WijqT
i qj

= tr(QT DQ)− tr(QT WQ)

= tr(QT LQ),

where tr(·) denotes the trace of a matrix, De(i) =
∑

j Wij is the degree of Xi in graph
G, D is a diagonal matrix with Dii = De(i) and L is the graph Laplacian matrix. In
addition, we maximize the global variance in the target space in order to maintain
the discrimination power of the space. In the discrete graph setting, the probability
of observing a node can be estimated by the node’s degree[4]. Therefore, the total
variance of X in the target space can be estimated by tr(QT DQ) (treating the origin
as the mean). The final optimization formulation is as follows

arg min
Q∈Rd×k

tr(QT LQ)
tr(QT DQ)

, s.t. eT Q = 0. (18)

The constraint means that the trivial feature e is removed from the solution. By the
Rayleigh-Ritz theorem[15], the solution of this optimization problem is given by the
first k non-trivial generalized eigenvectors (as column vectors of Q) corresponding to
the smallest eigenvalues of (L,D). Q contains the vector representation qi for each Xi

as a row vector which best preserves the local structure of the manifold approximated
by the graph.

For hypergraphs, we can compute such a Euclidean space similarly. Let G =
(V, E) be a hypergraph with node set V and edge set E. A hyperedge e ∈ E can
be regarded as a subset of vertices. e is said to be incident with a vertex v if v ∈ e.
Each hyperedge e is associated with a weight denoted by w(e) which encodes the
strength of the connection. Let H be a |V | × |E| weighted incidence matrix where
an entry H(v, e) = 1 if v ∈ e and 0 otherwise. The degree of a node i is defined as
De(i) =

∑
e∈E w(e)H(i, e). The degree of an edge e is defined as δ(e) =

∑
i∈V H(i, e),

i.e. the number of nodes in e. To learn the Euclidean space that best preserves the
hypergraph structure, we minimize the following cost function:

arg min
Q∈Rd×k

1
2

∑

e∈E

1
δ(e)

∑

i,j∈e

w(e) ‖qi − qj‖2 , (19)

which can be re-written as

1
2

∑

e∈E

1
δ(e)

∑

i,j∈e

w(e) ‖qi − qj‖2
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=
1
2

∑

e∈E

1
δ(e)

∑

i,j∈V

w(e)H(i, e)H(j, e) ‖qi − qj‖2

=
1
2

∑

e∈E

1
δ(e)

∑

i,j∈V

w(e)H(i, e)H(j, e)(qT
i qi + qT

j qj − 2qT
i qj)

=
∑

i∈V

‖qi‖2De(i)−
∑

e∈E

∑

i,j∈V

w(e)H(i, e)H(j, e)
δ(e)

qT
i qj

= tr(QT DvQ)− tr(QT HWeD−1
e HT Q) = tr(QT L̃Q), (20)

where Dv, De and We are three diagonal matrices containing node degrees, edge
degrees and edge weights respectively. Similarly, we also need to maximize the
variance in the target space which can be estimated by tr(QT DvQ). The final
optimization problem is

arg min
Q∈Rd×k

tr(QT L̃Q)
tr(QT DvQ)

, s.t. eT Q = 0. (21)

Again, the solution is obtained by solving the generalized eigenvector problem L̃q =
λDvq and selecting the first k non-trivial generalized eigenvectors corresponding to
the smallest eigenvalues.

If the sampled data is dense enough, the k nearest neighbors of instance Xi in
the learned space Q can well approximate the tangent space at Xi. Then we can do
Hessian Ranking with the learned space.

4 Experiments

In this section we apply Hessian Ranking on two real-life ranking problems, image
retrieval and music recommendation in social media data. In image retrieval, we have
a feature representation for the data instances (i.e. images), while for the music
recommendation problem we only have the relations between different entities (e.g.
users, music tracks, tags). In the following, we first show the experimental results for
the image retrieval problem and then discuss the results for the music recommendation
problem.

4.1 Image retrieval

4.1.1 Dataset

Our dataset for the image retrieval experiment contains 5,000 images of 50
semantic categories from the COREL database. Each image in the dataset is
described by a 297-dimensional feature vector which consists of the following
information

– Grid Color Moment: each image is partitioned into 3 × 3 grids. The color
moments (i.e. mean, variance and skewness) in each color channel (R, G, B) for
each grid are extracted. Totally, we have 81 color moment features.

– Edge: the Canny edge detector[3] is used to obtain the edge map for the edge
orientation histogram. Each histogram contains 36 bins with 10 degree for each
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bin. An additional bin is used to count the number of pixels without edge
information. This category has 37 features.

– Gabor Wavelets Texture: each image is first scaled to size 64× 64. The Gabor
wavelet transform[12] is then applied on the scaled image with 5 levels and 8
orientations, which results in 40 subimages. For each subimage, mean, variance
and skewness are computed. This type of feature contributes 120 dimensions.

– Local Binary Pattern (LBP): a gray-scale texture measure derived from a general
texture definition in a local neighborhood[16]. This forms a 59-dimensional LBP
histogram vector.

4.1.2 Evaluation and results

We compare Hessian Ranking (abbreviated as HessRanking hereafter) with the
traditional Laplacian-regularized manifold ranking method which is denoted by
LapRanking. Euclidean Distance is also employed as a baseline, which ranks images
according to their Euclidean distances to the query image in the 297-dimensional
feature space.

Specifically, we treat each of the 5000 images as a query image and rank the
remaining images. The relevant set for each image is the remaining 99 images in the
corresponding category. We use Precision, Recall, Normalized Discount Cumulative
Gain (NDCG) and Mean Average Precision (MAP) to evaluate these ranking
methods. For a ranking position n, Precision is defined as the number of relevant
images in the ranking list up to ranking position n divided by n. Recall is defined as
the number of relevant images in the ranking list up to ranking position n divided
by the number of all relevant images (i.e. 99). NDCG at position n is defined as

NDCG@n = Zn

n∑

i=1

2ri − 1
log2(i + 1)

, (22)

where ri is the rating of the image at rank i. In our case, ri is 1 if the image is
a relevant image and 0 otherwise. Zn is chosen so that the perfect ranking has a
NDCG value of 1. Average Precision (AP) is the average of precision scores after
each relevant image in the ranked list:

AP =
∑

i Precision@i× corri

No. of relevant images in the list
, (23)

where Precision@i is the precision at ranking position i and corri = 1 if the image
at position i is a relevant image, otherwise corri = 0. MAP is the mean of average
precision scores over all query instances. In our experiments, we compute MAP with
respect to ranked lists of length 100. For the two manifold ranking methods, each
time we take one image as the query and set its query label to 1. The performance
results are averaged over all 5000 query images.



400 International Journal of Software and Informatics, Volume 7, Issue 3 (2013)

20 4 0 6 0 8 0 100
0.2

0.25

0.3

0.3 5

0.4

0.4 5

0.5

S co pe

P
re

c
is

io
n

 

 

H es s Ranking
LapRanking
Euclidean

Figure 1. Performance comparison of the three ranking methods on the COREL dataset

in terms of Precision under different scopes. The results are averaged over 5000 query

instances.
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Figure 2. Performance comparison of the three ranking methods on the COREL dataset in

terms of Recall under different scopes. The results are averaged over 5000 query instances.

Figures 1 and 2 show the performance comparison of the three ranking methods on the
COREL dataset. We show their Precision and Recall as a function of the scope. We
tune the parameters of LapRanking and show its best performance. For HessRanking,
we set m = k = 20 and λ = 11.5. How to set these parameters will be discussed
later. As can be seen, HessRanking consistently outperforms the other two baseline
methods in terms of Precision and Recall. The performance superiority is significant
according to one-tailed paired t-test with significance level α = 0.01. We also show
the performance comparison in terms of NDCG@n and MAP in Table 1. One can see
that HessRanking also outperforms the baseline methods over a wide range of ranking
positions. For NDCG@n, the superiority of HessRanking is significant according to
Wilcoxon test with significance level α = 0.05. This comparison demonstrates that
our intuition that the Hessian energy is suitable for ranking problems is correct in
practical problems. The reason should be that the Hessian energy favors ranking
functions which change linearly with the geodesic distance to the query instance,
while the traditional Laplacian-based ranking method has a bias towards constant
functions.
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Table 1 Comparison of the three ranking methods in terms of NDCG@n and

MAP on the COREL dataset

Methods NDCG@10 NDCG@20 NDCG@30 NDCG@50 NDCG@100 MAP

HessRanking 0.484 0.457 0.451 0.467 0.544 0.378

LapRanking 0.465 0.438 0.434 0.451 0.528 0.366

Euclidean 0.467 0.431 0.420 0.437 0.525 0.342
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Figure 3. Performance of HessRanking on the COREL dataset when varying parameters

(a) k (i.e. k nearest neighbors) and (b) λ. We fix the other parameter when tuning one of

k and λ. The performance of the best baseline is also shown for comparison purpose.

Next we explore the impact of different parameter settings on the performance of
HessRanking. The free parameters of HessRanking are k for kNN, m for the
dimensionality of the manifold and λ, the regularization weight of B. We first set
m = k and vary k and λ. Figure 3 show the corresponding results. When varying k,
λ is fixed at λ = 11.5; when tuning λ, we fix k at 20. The dotted lines represent the
performance of LapRanking which is the best result baselines can achieve. We can
see that HessRanking outperforms LapRanking in a wide range of parameter values.
Then we investigate the relationship between k and m. We vary m with different
fixed k values and the results are shown in Figure 4. Generally speaking, when
(m + 1)m/2 > k, the model tends to overfit the data[11]. However, we find that the
performance of HessRanking increases with increasing m (and seems to converge
when m = k). This could be because that our ranking function is learned from and
applied to the same data. Therefore, overfitting does not affect the performance of
HessRanking.

4.2 Music recommendation

4.2.1 Dataset

Our dataset is collected from Last.fm1 which is a popular social platform for
music listening and sharing. In Last.fm, users can add keyword tags to music related
objects and join different groups. The specific collection procedure can be found in

1http://last.fm/
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Ref. [19]. The Last.fm dataset contains six types of objects, whose notations and
statistics are summarized in Table 2.
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Figure 4. Model selection with respect to the dimensionality of the data manifold (m).

Table 2 Objects in our data set

Objects Notations Count

Users U 2596

Groups G 1124

Tags Ta 3255

Tracks Tr 16055

Albums Al 4694

Artists Ar 371

The relations among these objects are given in Table 3. The relations are
divided into four categories, social relations, actions on resources, inclusion relations
among resources, and acoustic-based music similarity relations. Social relations
include friendship relations and membership relations (e.g., an interest group),
denoted by R1 and R2, respectively. Actions on resources involve four types of
relations, i.e., listening relations (R3), and tagging relations on tracks, albums and
artists (R4, R5 and R6). Inclusion relations among resources are the inclusion
relations between tracks and albums, albums and artists (R7 and R8).
Acoustic-based music similarity relations are denoted by R9. To compactly
represent the music content, We derive features from Mel-frequency cepstral
coefficients (MFCCs)[2]. MFCCs are prevalent in audio classification. A given music
track is segmented into short frames and the MFCC is computed for each frame.
Similar to Ref. [14], we use K-means to group all the frames of each track into
several clusters. For all the clusters, the means, covariances, and weights are
computed as the signature of the music track. To compare the signatures for two
different tracks, we employ the Earth-Mover’s Distance (EMD)[18]. The six types of
objects and nine types of relations among these objects are employed to construct
the hypergraph which will be used in the experiment. The readers could refer to
Ref. [19] for construction details of the hypergraph.



Ziyu Guan, et al.: Manifold ranking using hessian energy 403

4.2.2 Results

Table 3 Relations in our data set

Relations Notations Count

Friendship relations R1 4503

Membership relations R2 1124

Listening relations R3 304860

Tagging relations on tracks R4 10936

Tagging relations on albums R5 730

Tagging relations on artists R6 36812

Track-album inclusion relations R7 4694

Album-artist inclusion relations R8 371

Similarities between tracks R9 -
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Figure 5. Performance comparison of HessRanking and LapRanking in terms of

NDCG@n on the Last.fm dataset.

In this experiment, we treat each user as a query and rank music tracks accordingly.
The top ranked music tracks which have not been listened to by the user are then
recommended to the user. For each user, we randomly select 20% listening relations
as test data as well as the ground truth[19]. The final performance results are
averaged over all 2596 users. Figure 5 shows the performance comparison of
HessRanking and LapRanking in terms of NDCG. Since NDCG favors ranked lists
which put relevant items at high positions, the results indicate that HessRanking
can achieve better ranking results than LapRanking. The performance superiority is
significant by Wilcoxon test with significance level α = 0.05 (except for n = 10).
The MAP scores for HessRanking and LapRanking are 0.399 and 0.295, respectively,
which also indicates that HessRanking generates better ranked lists than
LapRanking. The reason should be that LapRanking has a bias towards constant
functions and consequently tends to blur the ranking results. Unfortunately,
HessRanking does not show significant better performance than LapRanking in
terms of Precision and Recall. As aforementioned, we learn the Euclidean space
which best preserves the local geometric structure of the manifold approximated by
the relational graph. Such a transformation leads to information loss and noises,
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which could explain why HessRanking cannot beat LapRanking on Precision and
Recall.

5 Conclusions

In this work, we propose a novel manifold ranking framework based on the
Hessian energy regularization. The critical difference between Hessian regularization
and Laplacian regularization is that the Hessian regularizer favors ranking functions
which change linearly along the geodesics of the data manifold, while the Laplacian
regularizer has a bias towards constant functions and could potentially blur the
ranked lists. The experimental results on two real-life ranking problems, content
based image retrieval and music recommendation in social media data, demonstrate
that HessRanking outperforms LapRanking significantly. In future work, we plan to
develop new Hessian energy based learning methods for graph data which can
eliminate the information loss and noises incurred by projecting graph nodes into
Euclidean spaces.
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