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Abstract We propose a notion of state distinguishability that does not refer to

probabilities, but rather to the ability of a set of states to serve as programs for a desired

set of gates. Using this notion, we reconstruct the structural features of the task of state

discrimination, such as the equivalence with cloning and the impossibility to extract

information from two non-distinguishable pure states without causing a disturbance. All

these features express intrinsic links among operational tasks, which are valid

independently of the particular theory under consideration.
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1 Introduction

Quantum information science is making rapid progress towards the realization
of a new generation of technologies which promises to revolutionize communication,
sensing, and computation[34,35,39]. At the same time, it is also revolutionizing the very
notion of information, questioning the preeminence of classical information theory as
the canonical theory of information.

The sharp contrast between the familiar world of classical information and the
exotic features of quantum information quickly leads to questions about alternative
theories of information beyond quantum theory: after all, we expected the world
to be classical and discovered that it was quantum—what if one day we were to
discover another, more fundamental theory of physics, which is neither classical nor
quantum? Should we revise the conceptual framework of information theory once
more? This type of questions motivated the investigation of a larger class of theories,
broadly known as general probabilistic theories (GPTs) [5-7,10,11,18,19,24-26,29,32,33,37].
GPTs provide a neutral framework for analyzing high level features of information-
processing protocols, independently of the particular laws that govern the hardware
level.
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The GPT framework has been used for characterizing quantum theory in terms of
operational axioms[11,18,19,24,32,33] and for establishing direct links among information-
theoretic protocols[5-7,10,29].

This analysis has the merit of identifying structures in the family of quantum
protocols and of highlighting general “laws of information” that are independent of
the specific theory under consideration. An example of such a law is the equivalence
between cloning and distinguishability, stating that different pieces of information can
be replicated if and only if they are distinguishable from one another.

In the spirit of identifying theory-independent “laws of information” and
establishing direct links among protocols one can also go one step further. Instead
of probabilistic theories, one can consider more primitive theories that only describe
operations, without assigning probabilities to the random events that may be
generated by these operations. The study of these theories, now known as process
theories, has been pioneered by Abramsky and Coecke[1,2,15,17] and has been
extensively employed for the reconstruction of quantum protocols over the past ten
years[1,3,20,22,36].

While a full characterization of quantum theory in the language of process
theories seems to be still far away, it is stimulating to ask how far the
probability-free approach can go. At the level of principles this is an important
question, because it aims at drawing the line between those aspects of information
that are defined only in terms of operations (and therefore can be mechanized) and
those that rely on the subjective expectations of an agent. This paper provides a
contribution in this direction, presenting a probability-free treatment of the relations
between distinguishability, cloning, and programming of gates.

2 Process Theories

The framework of process theories [1,15,17] is based on (strict) symmetric monoidal
categories (SMC)[4]. Nevertheless, no prior knowledge of category theory is required
to understand its basic features: the basic categorical facts are encoded in a graphical
language[38] which is identical to the familiar languages of quantum circuits and of
classical Boolean circuits. The role of SMCs is just to provide the mathematical
foundations of such graphical language.

2.1 An abstract circuit model

A process theory describes circuits that transform input data into output data,
or, in the terminology of physics, circuits that transform input systems into output
systems. Mathematically, a “process theory” is an SMC, here denoted by C. The
objects in the category, denoted by |C|, represent different data types (a.k.a. different
systems, in the physics terminology). The morphisms in the category represent the
different gates (a.k.a. different physical processes) that transform an input system
into an output system. A gate of type A → B will be represented as

A G B .

The set of all gates of type A → B will be denoted by C(A,B). For two gates G ∈
C(A,B) and H ∈ C(B,C), we denote the sequential composition as G;H ∈ C(A,C)
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and represent it graphically as

A G B H C .

The identity gate on A, denoted by IA, will be represented equivalently as

A I A and A .

A gate U : A → B is reversible (or equivalently, is an isomorphism) iff there
exists another gate U−1 : B → A such that

A U B U−1 A = A and B U−1 A U B = B .

If there exists a reversible gate of type A → B, the systems A and B are called
isomorphic, denoted as A ' B.

When two systems A and B are considered together, we denote their tensor as
A ⊗ B. The absence of relevant data is represented by the monoidal unit, denoted
by I. When two gates A ∈ C(A,A′) and B ∈ C(B,B′) operate in parallel, their
action is described by the tensor product gate A⊗B ∈ C(A⊗B,A′⊗B′), graphically
represented as

A A A′

B B B′
.

Motivated by the physical interpretation, a gate ρ of type I → A will be called a
state of system A and will be represented as

Ã'!&ρ A := I ρ A . (1)

A gate a of type A → I will be called an effect on system A and will be represented
as

A ½À¾¿a := A a I . (2)

A gate s of type I → I will be called a scalar and will be sometimes represented
“out of the box”, as

s := I s I . (3)

We denote the identity gate on system I as 1. Recall that scalars in an SMC
form a commutative monoid[31], with s; 1 = 1; s = s for every scalar s ∈ C(I, I).

2.2 Causality

An important requirement for a physical theory is causality [10,11]. Informally,
causality is the requirement that information in a circuit flows from the input to the
output, and not vice-versa.

In the categorical language, causality is formulated as terminality of the tensor
unit [23,28]:
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Axiom 1 (Causality). For every system A ∈ |C| there exists one and only
one gate of type A → I, called the trace on A, denoted by TrA, and represented as
A "%#$Tr .

Note that, by definition, one has TrI = 1. Note also that, by definition, every
state ρ ∈ C(I,A) is normalized as

Ã'!&ρ A "%#$Tr = 1 (4)

and, more generally, every gate G ∈ C(A,B) is normalized as

A G B "%#$Tr = A "%#$Tr . (5)

2.3 Marginals and extensions

Thanks to Causality, one can define marginal states:

Definition 2.1. The marginal on A of a state σ ∈ C(I,A ⊗ B) is the state
ρ ∈ C(I,A) defined by

Ã'!&ρ A := σ
?>
89

A

B "%#$Tr
.

When the above equation holds, we say that σ is an extension of A to the context B.
The same definition can be put forward for general gates:

Definition 2.2. The marginal on system A′ of a gate H ∈ C(A,A′⊗B) is the
gate G ∈ C(A,A′) defined by

A G A′ :=
A

H
A′

B "%#$Tr
.

When the above equation holds, we say that H is an extension of G to the context B.

2.4 Pure states and pure gates

Pure states are an essential concept both in physics and computer science.
Traditionally, they are defined as states that cannot be obtained by randomizing the
preparation of the system—equivalently, states that cannot be decomposed as a
convex combination of other states. Here, however, we did not introduce any notion
of convex combination. An expression like

Ã'!&ρ A = p Ã'!&ρ0 A + (1− p) Ã'!&ρ1 A , p ∈ C(I, I)

is not legal in our language, because there is no notion of “sum of states” and no
notion of “difference of two scalars”.

In order to introduce pure states in the framework, there are a few different
options: First, one could introduce probabilities, as it was done in Ref. [10]. In this
way, the gates inherit a structure of vector space over the real numbers. An other
option is to assume that there is a distinguished subset of states and gates that are
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nominally regarded as “pure”. This approach was followed by Coecke[16] and Coecke-
Perdrix[21], who defined the category of pure processes as a monoidal subcategory of
C. In this paper we will follow a third option, in which pure states and pure gates
are defined only in terms of the circuit structure. This approach is at the basis of the
construction of categorical purification, recently put forward by the author[13,14]. In
this construction, the pure states are defined as follows

Definition 2.3. A state α ∈ C(I,A) is pure iff it has only trivial extensions,
that is, iff for every system B ∈ |C| and for every state σ ∈ C(I,A ⊗ B) one has the
implication

σ
?>
89

A

B "%#$Tr
= »Â¼Áα A =⇒ ∃β ∈ C(I,B) : σ

?>
89

A

B
=
»Â¼Áα A

(/).β B .

The set of all pure states of system A will be denoted as PureC(I,A).
Intuitively, a pure state is defined as an “integral piece of information”, which

is independent of the surrounding context. From the definition it follows that the
product of two pure states is a pure state[13,14], namely

α⊗ β ∈ PureC(I,A⊗ B) ∀α ∈ PureC(I,A) ,∀β ∈ PureC(I,B) . (6)

The definition of pure state can be extended in the obvious way to general gates,
leading to the following

Definition 2.4. A gate G ∈ C(A,A′) is pure iff it has only trivial extensions,
that is, iff for every system B ∈ |C| and for every gate H ∈ C(A,A′ ⊗B) one has the
implication

A

H
A′

B "%#$Tr
= A G A′ =⇒ ∃β ∈ C(I,B) :

A

H
A′

B
=

A G A′

(/).β B

.

The set of all pure gates of type A → A′ will be denoted as PureC(A,A′).

3 Programmability, Distinguishability, and Copiability

We are now ready to introduce the three tasks that are protagonists of this paper.

3.1 Programmability

Consider the task of programming the operations performed by a machine using
a set of instructions, encoded in the state of a physical system. The idea can be
formalized as follows:

Definition 3.1. Let S = {ρx}x∈X be a set of states of system A and let
G = {Gx}x∈X be a set of gates of type B → B′, with X a suitable index set.

We say that the states in S program the gates in G iff there exists a gate W, of
type A⊗ B → B′, such that

B

W
B′ = B Gx

B′ ∀x ∈ X .

Ã'!&ρx A
(7)
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In other words, the states in S program the gates in G if there exists a machine
that can perform on demand every desired gate in G, controlled by a specific state in
S. Note that the gates in G do not need be reversible and, in general, their input and
output can differ. For example, the input could be set to be the trivial system B ≡ I.
In this case, the gates in G initialize system B′ in a given set of states {βx}x∈X and
Eq. (7) becomes

Ã'!&ρx A W B′ = (/).βx
B′ ∀x ∈ X . (8)

3.2 Distinguishability

In quantum theory, the density matrices in a given set {ρx}x∈X are (perfectly)
distinguishable iff there exists a measurement, described by operators {Px}x∈X,
satisfying the equation

Tr[Pxρy] = δxy ∀x, y ∈ X .

This definition cannot be exported to our abstract circuit model, however,
because we do not have a notion of measurement. Can we still make sense of the
expression that some states are perfectly distinguishable?

To answer this question, we should go at the root of the operational meaning
of distinguishability. Operationally, the purpose of distinguishing states is to make
decisions. For example, in a quantum state discrimination game the player would
use the measurement {Px}x∈X to decide which answer x ∈ X she should send to the
referee. One can also think of other types of games, where the player has a set of
possible moves, described by a set of gates {Gx}x∈X, and has to choose one move
depending on the information contained in the state ρx. All these examples suggest
that one can identify the ability to reliably distinguish states with the ability to use
them as programs for a desired set of operations. In the abstract circuit model, this
intuition can be formalized as follows:

Definition 3.2. Let S = {ρx}x∈X be a set of states of system A. The states
in S are (perfectly) distinguishable iff for every pair of systems B,B′ and for every
indexed set of gates G = {Gx}x∈X of type B → B′ there exists a gate WG : A⊗B → B′

such that
B

WG

B′ = B Gx
B′ ∀x ∈ X .

Ã'!&ρx A
(9)

In short, the states S are perfectly distinguishable iff they can program every
desired set of gates.

3.3 Distinguishability of the output implies distinguishability of the input

An obvious consequence of definition 3.2 is the following: if the states in S can
be transformed into a set of distinguishable states, then they must be perfectly
distinguishable:

Proposition 3.1. Let S′ = {ρ′x}x∈X be a set of perfectly distinguishable states
of system A′. If there exists a gate A : A → A′ such that

Ã'!&ρx A A A′ = 0716ρ′x A′ ∀x ∈ X , (10)
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then the states {ρx}x∈X are perfectly distinguishable.

Proof Since the states in S′ are perfectly distinguishable, for every indexed set of
gates G = {Gx}x∈X there exists a gate W ′

G such that

B

W ′
G

B′ = B Gx
B′ ∀x ∈ X .

0716ρ′x A′

Defining

B

WG

B′

A
:=

B

W ′
G

B′

A A A′

one obtains that the states in S program the gates in G. Since G is arbitrary, this
means that the states in S are distinguishable. 2

3.4 Copiability

Suppose that we are given a physical system A, with the promise that the system
is in a state ρx chosen from a set S = {ρx}x∈X. Thinking of the state as a piece of
information, it is natural to ask whether it is possible to make copies of it. In the
abstract gate model, we say that the states in S are copiable iff there exists a gate
C : A → A1 ⊗A2, with A1 ' A2 ' A, such that

Ã'!&ρx A

C
A1

A2
=
Ã'!&ρx

A1

Ã'!&ρx
A2

∀x ∈ X . (11)

3.5 Distinguishability implies copiability

Suppose that the states in S are distinguishable. Then, an immediate consequence
of definition 3.2 is that they can be copied. Indeed, we can choose the set G to consist
of gates that initialize two systems of type A in the states {ρx ⊗ ρx}x∈X. Applying
Eq. (9) to this particular set of gates we obtain a gate WG such that

Ã'!&ρx A

WG

A1

A2
=
Ã'!&ρx

A1

Ã'!&ρx
A2

∀x ∈ X . (12)

A natural question is whether the converse is also true, namely whether copiable
states are also distinguishable. This result does not follow from the definitions given
so far and requires some additional assumptions regarding distinguishability with
multiple copies. These assumptions are spelt out in the next two sections.

4 Asymptotic Distinguishability

In this section we introduce a notion of distinguishability in the asymptotic limit.
In order to do that, we introduce a topology on top of the abstract circuit model.

4.1 Approximation of a gate

The most primitive notion of “closeness” is the topological one. In order to
express the fact that two gates are “close to one another” we introduce the following:
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Definition 4.1. A topology for the circuit model C consists in the assignment
of a family of open subsets OA→B to every set of gates C(A,B), in accordance with
the following requirements

1. OA→A′ ×OB→B′ ⊆ OA⊗B→A′⊗B′ for arbitrary systems A,A′,B,B′ ∈ |C|

2. the insertion of a gate in a circuit is continuous: for all systems A,B,C,D,R ∈
|C|, for every pair of gates F : A → B ⊗ R and H : C ⊗ R → D and for every
open set O ∈ OA→D, the set of gates

(F ,H)−1O :=

{
G ∈ C(B → C) such that

A

F
B G C

H
D

R
∈ O

}

is open.

Using the above definition, we can express the fact that a sequence of gates
converges to a specified gate. Precisely, the sequence (Gn)n∈N ⊂ C(A,B) converges
to the gate G iff for every open set O ∈ OA→B there exists an integer NO such that
one has

Gn ∈ O ∀n > NO .

When this is the case, we write limn→∞ Gn = G.
In this paper, we assume the following

Axiom 2. For every pair of systems A,B ∈ |C|, we assume that the set of gates
C(A,B) is compact, meaning that for every sequence of gates (Gn)n∈N ⊂ C(A,B) one
can find a subsequence (Gnk

)k∈N and a gate G such that limk→∞ Gnk
= G.

4.2 Approximate programmability

The notion of approximation of gates allow us to discuss approximate
programmability:

Definition 4.2. For every integer n, let An be a system in C and let Sn :=
{ρx,n} be a set of states of system An. We say that the states in Sn asymptotically
program the gates in G = {Gx}x∈X iff there exists a gate WG,n : An ⊗ B → B′ such
that

lim
n→∞

B

WG,n

B′

(/).ρx,n
An

= B Gx
B′ (13)

uniformly for every x ∈ X.
Note that we required that the convergence should be uniform in x, because this

is the appropriate requirement when the set X is infinite.

4.3 Asymptotic distinguishablity

Using definition 4.2 it is immediate to give a notion of asymptotic
distinguishability of states:

Definition 4.3. For every integer n, let An be a system in C and let Sn :=
{ρx,n} be a set of states of system An. We say that the states Sn are asymptotically
distinguishable in the limit n →∞ iff, for every pair of systems B,B′ ∈ |C| and every
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set of gates G = {Gx}x∈X ⊂ C(B,B′), the states in Sn asymptotically program the
gates in G.

The notion of asymptotic distinguishability is very useful. Its usefulness is mostly
due to the following proposition, which links distinguishability with its asymptotic
version:

Proposition 4.1. Let S = {ρx}x∈X be set of states of system A and, for every
n ∈ N, let Sn = {ρx,n}x∈X be a set of states of system An. If the states in Sn are
asymptotically distinguishable and if there exists a gate Cn : A → An such that

Ã'!&ρx A Cn
An = (/).ρx,n

An ∀x ∈ X ,

then the states in S are distinguishable.

Proof Since the states in Sn are asymptotically distinguishable, for every pair of
systems B,B′ ∈ |C| and every set of gates G = {Gx}x∈X ⊂ C(B,B′) there exists a
gate WG,n such that

lim
n→∞

B

WG,n

B′

(/).ρx,n
An

= B Gx
B′ ∀x ∈ X .

Defining the gate

B

ZG,n

B′

A
:=

B

WG,n

B′

A Cn
An

and combining the two equations above, one obtains

lim
n→∞

B

ZG,n

B′

Ã'!&ρx A
= B Gx

B′ ∀x ∈ X .

Now, Axiom 2 guarantees that there exists a subsequence (ZG,nk
)k∈N and a gate ZG

such that limk→∞ZG,nk
= ZG. Hence, one has

B Gx
B′ = lim

n→∞

B

ZG,n

B′

Ã'!&ρx A

= lim
k→∞

B

ZG,nk

B′

Ã'!&ρx A

=
B

ZG

B′

Ã'!&ρx A
∀x ∈ X ,

where the last equality used the fact that the composition of gates is continuous (cf.
item 2 of definition 4.1). In conclusion, we proved that every set of gates G can be
programmed by the states in S. By definition 3.2, this means that the states in S are
distinguishable. 2
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5 Asymptotic i.i.d. Distinguishability

Suppose that we are given a large number of identical systems of type A, prepared
in the i.i.d. state ρ⊗N

x , x ∈ X. Intuitively, if the states S are distinct from one another,
then it should be possible to find out the value of x with vanishing error. This
is the case in quantum theory, where one can perform quantum state tomography
and identify the state ρx up to an error that vanishes when the number of copies
goes to infinity. Of course, the tomography argument requires one to have a notion
of measurement, which has not been introduced in the framework so far. In order
to express the intuitive property of asymptotic i.i.d. distinguishability, one has two
alternatives: The first alternative is to introduce measurements and probabilities.
When this is done, one can prove a theorem stating that the probability of error
in the identification of the label x vanishes in the limit N → ∞[10,29]. The second
alternative is to assume asymptotic i.i.d. distinguishability as an axiom. Here we
follow this route:

Axiom 3. For every system A ∈ |C| and for every set of distinct states of A,
say S = {ρx}x∈X, the i.i.d states {ρ⊗n

x }x∈X are asymptotically distinguishable.
In the next sections we will explore the consequences of this requirement.

6 Distinguishability and Generation of Side Information

Distinguishability is closely related with another operational task, which consists
in generating some additional piece of data from a given state. Formally, the task is
defined as follows:

Definition 6.1. Let S = {ρx}x∈X be a set of distinct states of system A. We
say that the gate C : A → A ⊗ E generates side information for the states in S iff
there exists a set of states of system E, say {ηx}x∈X, such that

Ã'!&ρx A

C
A

E
=
Ã'!&ρx A

Ã'!&ηx E
∀x ∈ X , (14)

and at least two states ηx0 and ηx1 are distinct. Moreover, we say that the gate C
generates faithful side information iff the states {ηx}x∈X are all distinct.

One example of process that generates faithful side information is copying: in
this particular case, one has E = A and ηx = ρx for every x ∈ X.

We now show that only distinguishable states allow one to generate faithful side
information:

Proposition 6.1. The following are equivalent:

1. the states S are distinguishable

2. there exists a gate that generates faithful side information for S.

Proof: Clearly, if the states are distinguishable, one can use them to program the
preparation of the states {ρx⊗ηx}x∈X for every desired set of states {ηx}x∈X of every
desired system E. Conversely, suppose that there exists a gate C that generates side
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information for the states in S. By applying the gate C twice, one obtains

Ã'!&ρx A

C

A

C
A

E

E

=

Ã'!&ρx A

Ã'!&ηx E

Ã'!&ηx E

∀x ∈ X .

More generally, applying C for n times one obtains a gate Cn : A → A ⊗ E⊗n such
that

Ã'!&ρx A

Cn

A

E⊗n
=
0716 ρx

A

0716η⊗n
x

E⊗n
∀x ∈ X ,

Discarding the output system A, one obtains the gate

A C̃n
E⊗n

:=
A

Cn

A "%#$Tr
E⊗n

,

which satisfies

Ã'!&ρx A C̃n
E⊗n

= 0716η⊗n
x

E⊗n ∀x ∈ X ,

due to the normalization condition of Eq. (4). Now, by hypothesis the states
{ηx}x∈X are distinct. Hence, by Axiom 3 the states in the set Sn := {η⊗n

x }x∈X are
asymptotically distinguishable. Proposition 4.1 then guarantees that the states in S

are distinguishable. 2

When the side information is not faithful, the situation is slightly more diversified.
In analogy with Refs. [12,27,30] we define the confusability graph of a set of states
S = {ρx}x∈X as the graph where

1. the vertices are the elements of X

2. two vertices x and y are adjacent iff the corresponding states ρx and ρy are not
distinguishable.

Let us denote by {Xk}K
k=1 the connected components of the confusability graph. We

then have the following

Proposition 6.2. If the gate C : A → A ⊗ E generates side information for
the set S, then for every connected component Xk there exists a state ηk ∈ C(I,E)
such that Ã'!&ρx A

C
A

E
=
Ã'!&ρx A ∀x ∈ Xk .

Ã'!&ηk E

Proof: By definition, the fact that the gate C generates side information amounts
to the condition Ã'!&ρx A

C
A

E
=
Ã'!&ρx A ∀x ∈ X .

Ã'!&ηx E

We have to show that ηx does not depend on the particular element x, but only to
the connected component it belongs to. This is easily done thanks to proposition 6.1,
which guarantees that if x and y are connected, then ηx = ηy. 2
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7 Copiability-Distinguishability Equivalence

In the previous section we saw that only distinguishable states can generate
faithful side information. This fact implies a fundamental equivalence between
copiability and distinguishability.

Proposition 7.1. Let S ⊂ C(I,A) be a finite set of distinct states. The states
S are copiable if and only if they are distinguishable.

Proof: We already saw in subsection 3.5 that distinguishable states are copiable.
Conversely, suppose that the states in S are copiable with a gate C, as in Eq. (11).

By definition, the gate C generates faithful side information. Hence, by proposition
6.1 the states S must be perfectly distinguishable. 2

8 Cryptographic No Information Without Disturbance

At the qualitative level, the security of the many quantum key distribution
protocols (such as e.g. Ref. [8]) is based on the fact that when a quantum system is
prepared in a pure state chosen from a set of two (or more) non-orthogonal states,
an eavesdropper cannot extract any information about the state of the system
without changing the state of the system. We refer to this feature as the
Cryptographic No Information Without Disturbance property. An iconic
demonstration of this working principle is the B92 protocol[9], which employs the
transmission of just two non-orthogonal states.

It is then natural to wonder under which conditions this feature can be reproduced
in a general process theory, other than quantum theory.

Here we show that, if one accepts the definitions given in this paper, the
Cryptographic No Information Without Disturbance is a logical implication, valid in
arbitrary theories. We model the process of extracting information from system A
as a gate G of type A → A⊗E, where E is the system held by the eavesdropper. For
the information encoded in the states α0 and α1, the condition of no disturbance is

Ã'!&αx
A

G
A = Ã'!&αx

A ∀x ∈ {0, 1} ,

E "%#$Tr
(15)

meaning that the marginal state of system A is not affected by the presence of the
gate G. On the other hand, the condition that the gate G extracts information from
the input is that the marginal state of system E depends on the input label x, namely

Ã'!&α0
A

G
A "%#$Tr
E

6=
Ã'!&α1

A

G
A "%#$Tr
E

. (16)

With these definitions we have the following

Proposition 8.1. Let α0 and α1 be two pure states of system A. If the two
states not distinguishable, then no information can be extracted without disturbance,
that is, Eqs. (15) and (16) cannot be jointly satisfied.

Proof: Suppose that the no disturbance condition of Eq. (15) is satisfied. Then,
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by definition of pure state (definition 2.3), one must have

Ã'!&αx
A

G
A

E
=
Ã'!&αx

A ∀x ∈ {0, 1}
Ã'!&ηx E

for some (not necessarily pure) states η0 and η1. Now, if η0 6= η1, then the gate G
generates faithful side information for the states {α0, α1}. By proposition 6.1, this
implies that α0 and α1 are distinguishable. Since by hypothesis the states α0 and α1

are not distinguishable by hypothesis, we conclude that Eq. (16) cannot be satisfied.
2

9 Summary and Outlook

In this paper we formulated the basic notion of distinguishability without
reference to probabilities. Our definition, formulated in an abstract circuit model,
expresses the intuitive fact that two pieces of information are distinguishable if they
can be used as instructions to program every two desired operations. We then
examined the relation between distinguishability and copiability, which required us
to enrich the circuit model with a topology. Thanks to this enrichment, we have
been able to discuss a notion of asymptotic distinguishability and to require as an
axiom that a state can be identified with arbitrary precision from a sufficiently large
number of copies.

Once the above notions have been put into place, we established a number of
relations among the notions of distinguishability, copiability, and programming. First
of all, we showed that the states in a given set are distinguishable if and only if one
can generate some side information from them. From this basic result we derived
two facts: i) the equivalence between distinguishability and copiability, and ii) the
Cryptographic No Information Without Disturbance.

The present work is part of a larger program of categorification of the framework
of operational-probabilistic theories[10], which aims at reducing the probabilistic part
of the framework at the advantage of the operational one. In this spirit, an interesting
open question for future research is whether the notion of state broadcasting and the
no-broadcasting theorem for general probabilistic theories[29] can be imported to the
probability-free scenario.
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