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Abstract Give two quantum channels acting on different systems, we provide a natural and

powerful method for coupling them by virtue of correlations between local environments. As

an application, we demonstrate, through very simple examples, that separable (unentangled)

correlations are a useful resource for preserving entanglement, which otherwise would be

completely destroyed by entanglement breaking channels if environmental correlations were

absent. This reveals a mechanism for engineering environments in fighting decoherence.
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1 Introduction

Quantum systems are usually coupled with environments and thus subjected to
decoherence, which is ubiquitous in the interaction between classical and
quantum[1,2]. Combating decoherence is a vital and inescapable step in quantum
information processing. There are various approaches to this issue such as error
corrections and decoherence free subspaces[3–6], dynamical decoupling[7–9],
environmental engineering[10,11], etc.

A notorious manifestation of decoherence is the entanglement degradation, and
more dramatically, entanglement sudden death[12]. Many basic quantum tasks
require entanglement and its preservation. In this respect, an intriguing and
puzzling phenomenon is that separable correlations can be used for distributing
entanglement[13–16], and in particular, for manipulating and restoring broken
entanglement within the continuous variable Gaussian quantum information
setup[17–19]. Motivated by these studies and other foundational considerations, here
we explore a method for mitigating decoherence and preserving entanglement by
exploiting separable environmental correlations. Through a very simple scheme, we
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highlight that for qubit systems, separable correlations are a resource for preserving
entanglement and fighting decoherence. For this purpose, we first develop a
convenient and powerful method for coupling channels (linear, completely positive
and trace preserving maps on quantum states) on different systems which is of
independent interest, investigate its fundamental properties, and then employ a
curious effect of this coupling to manipulate entanglement.

2 Channel Coupling

Although there seem very few studies on how to couple different channels in a
general way[19], in some sense, channel coupling is a generalization of quantum state
coupling, which is essentially the subject of correlations. The latter is well studied
[20–24], and can be employed in establishing channel coupling.
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Figure 1. Entanglement preservation via separable (untangled) correlations. A state ρab,

shared between systems a and b, is subjected to channels Λa and Λb defined by Eqs. (1)

and (2), respectively. Here ρa′ and ρb′ are two environmental states for a and b,

respectively. For the joint action of the channels, there are two distinctive cases: (i) If the

two channels are independent in the sense that the environments are independent, then the

joint action Λa ⊗ Λb is defined by Eq. (3). (ii) If the environments are correlated in the

joint environmental state ρa′b′ with reduced states ρa′ = trb′ρ
a′b′ and ρb′ = tra′ρ

a′b′ , then

the joint action, as a coupling of Λa and Λb, is Λab defined by Eq. (4). The initial

entanglement stored in ρab, while broken by Λa ⊗Λb, may be partially preserved even if the

environments are separably correlated (unentangled) and the coupled channel Λab is

effected instead of Λa ⊗ Λb.

The precise setup is as follows. Consider two channels Λa and Λb on systems a

and b, respectively. Apart from the Kraus sum representations, they can always be
cast in the unitary representation forms as [25]

Λa(ρa) = tra′U
aa′(ρa ⊗ ρa′)(Uaa′)†, (1)

Λb(ρb) = trb′U
bb′(ρb ⊗ ρb′)(U bb′)†. (2)

Here Uaa′ and U bb′ are unitary operators on system-environments aa′ and bb′,
respectively, with a′ and b′ local environments pertaining to systems a and b,
respectively. Symbolically, Λa = {Uaa′ , ρa′}, Λb = {U bb′ , ρb′}. It should be
emphasized that the channels depend on both the unitary operators and the
environmental states. The change of the environmental states alone may completely
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alter the channels, such as from entanglement breaking to partial entanglement
preserving.

Now consider a bipartite state ρab shared by two systems a and b with reduced
states ρa = trbρ

ab, ρb = traρab. If the two channels act independently (the
environments a′ and b′ are independent), then the joint action is defined by the
(direct product) channel

Λa ⊗ Λb := (Ia ⊗ Λb)(Λa ⊗ Ib) = (Λa ⊗ Ib)(Ia ⊗ Λb). (3)

Here Ia and Ib are the identity channels on systems a and b, respectively. If the
channel Λa or Λb is entanglement breaking[26,27], then clearly Λa ⊗ Λb is also
entanglement breaking. In this case, the entanglement in the system state ρab is
destroyed by the channel action. The direct product channel Λa ⊗Λb corresponds to
the situation schematically depicted in Fig. 1 when the environmental states are
uncorrelated, that is, the joint state of the two environments is ρa′b′ = ρa′ ⊗ ρb′ .

Now, the natural question arises as what will happen if the two environmental
states ρa′ and ρb′ are correlated. Here we demonstrate that by coupling the
environments a′ and b′, we may partially preserve the entanglement. This happens
even if there is no entanglement between the environments: Separable correlations
suffice. When the environments a′ and b′ are correlated in the composite state ρa′b′ ,
we define the joint action

Λab(ρab) := tra′b′W (ρab ⊗ ρa′b′)W † (4)

as a coupling of Λa and Λb. Here W := Uaa′ ⊗U bb′ . It should be emphasized that the
unitary operators Uaa′ and U bb′ act on system-environments aa′ and bb′, respectively.

The channel coupling defined by Eq. (4) has the following remarkable properties:
(i) The reduced (marginal) channels of Λab are Λa and Λb in the sense that

trbΛab(ρab) = Λa(ρa), traΛab(ρab) = Λb(ρb).

(ii) If ρa′b′ = ρa′ ⊗ ρb′ is a product (uncorrelated) state, then Λab = Λa ⊗ Λb.

(iii) If both ρab and ρa′b′ are separable (i.e., unentangled), then Λab(ρab) is
separable.

(iv) If ρa′b′ is separable, then the entanglement in ρab, as quantified by the
concurrence C(·) (or any other entanglement monotone)[23,28], will decrease after the
action of the channel Λab, i.e., C(Λab(ρab)) 6 C(ρab).

Items (i) follows from direct manipulation of partial trace.
To prove (ii), noting that

(Ia ⊗ Λb)(ρab) = trb′(1a ⊗ U bb′)(ρab ⊗ ρb′)(1a ⊗ U bb′)†,

we have

Λa ⊗ Λb(ρab)

= (Λa ⊗ Ib)(Ia ⊗ Λb)(ρab)

= tra′(Uaa′ ⊗ 1b)((Ia ⊗ Λb)(ρab)⊗ ρa′)(Uaa′ ⊗ 1b)†

= tra′b′(Uaa′ ⊗ U bb′)(ρab ⊗ (ρa′ ⊗ ρb′))(Uaa′ ⊗ U bb′)†



258 International Journal of Software and Informatics, Volume 8, Issue 3-4 (2014)

= Λab(ρab).

Here 1a and 1b are the identity operators on the Hilbert spaces of systems a and b,
respectively.

To establish (iii), noting that both ρab and ρa′b′ are separable, we can always
write ρab =

∑
j ujρ

a
j ⊗ ρb

j and ρa′b′ =
∑

k vkρa′
k ⊗ ρb′

k with ρa
j , ρb

j , ρ
a′
k and ρa′

k states on
systems a, b, a′ and b′, respectively, and uj , vk > 0. Put

%a
jk := tra′U

aa′(ρa
j ⊗ ρa′

k )(Uaa′)†,

%b
jk := trb′U

bb′(ρb
j ⊗ ρb′

k )(U bb′)†,

then the final state is
Λab(ρab) =

∑

jk

ujvk%a
jk ⊗ %b

jk,

which is apparently separable.
To establish (iv), noting that when ρa′b′ =

∑
k vkρa′

k ⊗ ρb′
k is separable, we have

Λab(ρab) =
∑

k

vkΛa
k ⊗ Λb

k(ρab)

with

Λa
k(ρa) := tra′U

aa′(ρa ⊗ ρa′
k )(Uaa′)†

Λb
k(ρb) := trb′U

bb′(ρb ⊗ ρb′
k )(U bb′)†.

By the convexity and monotonicity of concurrence, the desired result follows from

C(Λab(ρab)) = C(
∑

k

vkΛa
k ⊗ Λb

k(ρab))

6
∑

k

vkC(Λa
k ⊗ Λb

k(ρab))

6
∑

k

vkC(ρab) = C(ρab).

From (iv), we readily see that if there is no entanglement in the initial state
ρab, then no entanglement can be created by the coupled channel Λab if the joint
environmental state ρa′b′ is also separable. On the other hand, if the channels Λa and
Λb are entanglement breaking, then the final state Λa ⊗ Λb(ρab) after the action of
the uncoupled channel is always separable even if the initial state ρab is maximally
entangled. But how about the final state Λab(ρab) after the action of the coupled
channel? In sharp contrast, a remarkable phenomenon, as will be revealed in the
subsequent calculation, is that Λab(ρab) may be entangled even if the environmental
state ρa′b′ is separable! That is, even if the uncoupled channel Λa⊗Λb is entanglement
breaking, and thus completely destroys all entanglement in the state ρab, the coupled
channel Λab may preserve some entanglement in ρab if the environments are correlated
in a separable way. In this sense, the correlations in the environmental state ρa′b′ serve
as a catalyst in preserving the entanglement in ρab. The interesting point here is that
if ρab is not entangled, then ρa′b′ cannot be used for creating entanglement between
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a and b. Only if there is already some entanglement in ρab, can the correlations in
ρa′b′ be useful in preserving entanglement between a and b.

3 An Illustrative Example

The above statement can be most directly and dramatically illustrated in two-
qubit systems. Let the system state be the Werner state[29]

ρab := (1− p)
1ab

4
+ p|Ψab〉〈Ψab| (5)

with parameter p ∈ [− 1
3 , 1]. It is well known that ρab is separable if p 6 1/3 and is

entangled if p > 1/3. Here |Ψab〉 := 1√
2
(|01〉 − |10〉) is the singlet state. Let the joint

environmental state be another Werner state

ρa′b′ := (1− p′)
1a′b′

4
+ p|Ψa′b′〉〈Ψa′b′ | (6)

with parameter p′. For our illustrative purpose, we will parameterize the channels as
{Uaa′ ,1a′}, {U bb′ ,1b′} and {Uaa′ ⊗ U bb′ , ρa′b′} with Uaa′ = U bb′ = U given by

U = e−i
∑3

k=1 ckσk⊗σk

=




r̄c− 0 0 −ir̄s−
0 rc+ −irs+ 0

0 −irs+ rc+ 0

−ir̄s− 0 0 r̄c−




. (7)

Here σk are the Pauli spin matrices and ck are real numbers satisfying π/4 > c1 >
c2 > |c3|, and

r := eic3 , c± := cos(c1 ± c2), s± := sin(c1 ± c2).

The matrix is with respect to the computational base {|00〉, |01〉, |10〉, |11〉}. Noting
that U is of a rather general form since any unitary operator acting on two-qubit
space, up to local unitary equivalence, can be expressed as the above form, due to
the Cartan decomposition theorem[30,31]. We need to evaluate

Λab(ρab)

= tra′b′(Uaa′ ⊗ U bb′)(ρab ⊗ ρa′b′)(Uaa ⊗ U bb′)† (8)

with Uaa′ = U bb′ = U. Noting that Uaa′ acts on aa′ and U bb′ acts on bb′. The explicit
expression is given in the Appendix. For the particular case c1 = π/4, c2 = c3 = 0,
we have c− = c+ = s− = s+ = 1/

√
2, r = 1. By the formula in the Appendix,

Λab(ρab) =
1
4




1 + pp′ 0 0 −p− pp′

0 1− pp′ −p + pp′ 0

0 −p + pp′ 1− pp′ 0

−p− pp′ 0 0 1 + pp′




.
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First, we consider the case p′ = 0 and thus the initial environmental state is a
product state ρa′ ⊗ ρb′ , we see readily that in this situation, the channels are actually
uncoupled, and the final system state Λab(ρab) = Λa⊗Λb(ρab) is always separable for
any p (even for p = 1 in which case the initial system state ρab is maximally entangled).
Thus the channels Λa and Λb are entanglement breaking in this situation.

Second, suppose that we correlate ρa′ and ρb′ in a Werner state with p′ 6= 0.

By the PPT criterion for two-qubit entanglement[32,33], we know that Λab(ρab) is
entangled if and only if

p(1 + 2p′) > 1.

In particular, if we take p′ = 1/3 (which ensues that ρa′b′ is separable), then the state
Λab(ρab) is entangled if p > 3/5, which stands in sharp contrast to the separability of
Λa ⊗ Λb(ρab) for any p. Thus, here the separable correlations in the environmental
state ρa′b′ help preserve some entanglement in the system state ρab, which would be
completely broken if the environmental correlations were absent.

The entanglement of Λab(ρab), as quantified by the concurrence C(·)[23,28], can
be readily evaluated as

C(Λab(ρab)) = max
{

0,
p(1 + 2p′)− 1

2

}
.

Clearly, if p′ = 1/3, then C(Λab(ρab)) > 0 for p > 3/5. However, C(Λa⊗Λb(ρab)) = 0
for any p. In particular, if the initial state is maximally entangled (the Werner
state with p = 1), then C(Λab(ρab)) = 1/3, which should be compared with C(Λa ⊗
Λb(ρab)) = 0.

It is interesting to check how much entanglement is lost due to the action of the
coupled channel Λab. For simplicity, we take p′ = 1/3 and assume that p > 3/5, then
the concurrence of the original Werner state ρab and that of the final state Λab(ρab)
is

C(ρab) =
3p− 1

2
, C(Λab(ρab)) =

5p− 3
6

respectively. The concurrence decreasing is

C(ρab)− C(Λab(ρab)) =
2
3
p.

4 Conclusion

In summary, we have illustrated a systematic way for coupling two channels by
use of environmental correlations through very simple examples. The fundamental
properties of this channel coupling are investigated. A curious and remarkable effect
of separable environmental correlations is revealed. This effect can be exploited to
preserve certain entanglement, which otherwise would be completely broken if
environments were not correlated. Although separable environmental correlations
cannot create entanglement out of separable system states, they do contribute to
preserving the existent entanglement. This corroborates the observation of separable
correlations as a physical resource[13–19,34–37]. The channel coupling method for
entanglement preservation provides an intuitive scheme for engineering environment,
and may be applied to realistic situations in suppressing decoherence. To what
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extent experimental realization of this scheme is feasible is a further issue worthy
investigation.
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Appendix. Here we present the analytical expression of Λab(ρab) defined by Eq.
(8). For the Werner states ρab and ρa′b′ given by Eqs. (5) and (6), Uaa′ = U bb′ = U

given by Eq. (7), the final state

Λab(ρab) := tra′b′(Uab ⊗ Ua′b′)(ρab ⊗ ρa′b′)(Uab ⊗ Ua′b′)†

can be analytically evaluated as

Λab(ρab) =
1
4

(
(1− p)(1− p′)1ab + (1− p)p′τab

1

+p(1− p′)τab
2 + pp′τab

3

)
.

Here

τab
1 =




x11 0 0 x14

0 x22 x23 0

0 x32 x33 0

x41 0 0 x44




τab
2 =




y11 0 0 y14

0 y22 y23 0

0 y32 y33 0

y41 0 0 y44




τab
3 =




z11 0 0 z14

0 z22 z23 0

0 z32 z33 0

z41 0 0 z44




with

x11 = x44 = (c2
− + s2

+)(c2
+ + s2

−)
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x22 = x33 = 2− (c2
− + s2

+)(c2
+ + s2

−)

x23 = x32 =
1
2
(r̄2 − r2)2(c2

−s2
+ + c2

+s2
−)

x14 = x41 = −(r̄2 − r2)2c−c+s−s+

y11 = y44 = (c2
− + c2

+)(s2
− + s2

+)

y22 = y33 = 2− (c2
− + c2

+)(s2
− + s2

+)

y23 = y32 = −1
2
(r̄2 + r2)2(c2

−c2
+ + s2

−s2
+)

y14 = y41 = −(r̄2 + r2)2c−c+s−s+

z11 = z44 = 4(c2
−s2

− + c2
+s2

+)

z14 = z41 = −4(r̄4 + r4)c−c+s−s+

z22 = z33 = 2− 4(c2
−s2

− + c2
+s2

+)

z23 = z32 = −(r̄4 + r4)(c2
− − s2

−)(c2
+ − s2

+)


