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Abstract The algebraic and geometric properties of Fisher information, its relations with

the theory of operator means have been very active fields in the last decades. In this paper
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1 Introduction

The concept of mean is one of the oldest in mathematics and we find in the
ancient greeks mathematics several examples of means. Nevertheless the field, in its
very different ramifications, is a very active one from the point of view of mathematical
research. Fisher information (FI), introduced by the founder of modern statistics in
1925, is certainly a very new concept on the appropriate scale of time.

It is now clear that FI is going to play a role in the scientific and mathematical
research comparable to the pervasive role of the much older concept of entropy (to
which FI is deeply linked). This is testified, for example, by the fact that FI plays
an important, albeit different, role in the works of the two recent Fields Medallists,
Perelman and Villani. The fact that entropy and FI share unexpected geometric
features was the basis for the birth of information geometry.

Actually there are many ‘proofs’ that the geometric features of probabilistic-
statistical objects are sometimes central to their understanding. One of the most
striking one is certainly the passage from classical FI to quantum FI: in this case
only by looking at FI as a Riemannian metric can one develop a satisfying non-
commutative theory. A crucial instruments for this passage is the theory of operator
means by Kubo-Ando.

On the other hand Fisher information appears also rooted in algebra because a
quite important result like the Stam inequality is group theoretical in character.

In this paper I will address some of this algebraic, geometric and means-related
features of Fisher information discussing some new results and some open problems
in the field.
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2 Preliminary Notion: Means and Fisher information

2.1 Classical Fisher information

If X is a real random variable with a strictly positive differentiable density ρ then
the score and the Fisher information are defined respectively as

JX := Jρ :=
ρ′

ρ
IX := Iρ := Varρ(Jρ) =

∫

R

(ρ′)2

ρ
(1)

2.2 Means for positive numbers

Let R+ = (0,+∞). A mean for pair of positive numbers is a function m(·, ·) :
R+ × R+ → R+ such that

i) m(x, x) = x ;

ii) m(x, y) = m(y, x) ;

iii) x < y =⇒ x < m(x, y) < y ;

iv) x < x′ y < y′ =⇒ m(x, y) < m(x′, y′) ;

v) m(·, ·) is continuous;

vi) for t > 0 one has m(tx, ty) = t ·m(x, y).

Set
Mnu := {m(·, ·) : R+ × R+ → R+|m is a mean }

Fnu is the class of functions f(·) : R+ → R+ such that

i) f(1) = 1;

ii) tf(t−1) = f(t);

iii) t ∈ (0, 1) =⇒ f(t) ∈ (0, 1);

iv) t ∈ (0,∞) =⇒ f(t) ∈ (0,∞);

v) f is continuous;

vi) f is monotone increasing.

It is straightforward to prove the following

Proposition 2.1. There is bijection between Mnu and Fnu given by the
formulas

mf (x, y) : = yf(xy−1)

fm(t) : = m(1, t)

Here we have some examples of means
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Table 1 Means and representing functions

Name f mf

arithmetic 1+x
2

x+y
2

1
2
(xβ + x1−β) β ∈ (0, 1) 1

2
(xβy1−β + x1−βyβ)

geometric
√

x
√

xy

logarithmic x−1
log x

x−y
log x−log y

harmonic 2x
x+1

2
1
x

+ 1
y

2.3 Operator monotone functions and operator means

Let us denote by Mn the complex matrices n × n. A function f : (0,+∞) → R

is said operator monotone iff ∀A,B ∈ Mn and ∀n = 1, 2, . . .

0 6 A 6 B =⇒ 0 6 f(A) 6 f(B).

Often it is useful to restrict to o. m. functions which are: i) normalized (namely
f(1) = 1); ii) symmetric (namely tf(t−1) = f(t)). Let us denote by Fop such family
of o.m. functions. The functions in the previous list all belong to Fop.

Now set Dn := {A ∈ Mn|A > 0}. An operator mean (according Kubo-Ando) is
a function m : Dn ×Dn → Dn such that:

(i) m(A,A) = A;

(ii) m(A,B) = m(B,A);

(iii) A < B l; =⇒ A < m(A,B) < B;

(vi) A < A′, B < B′ =⇒ ; m(A,B) < m(A′, B′);

(v) m is continuous;

(vi) Cm(A,B)C∗ 6 m(CAC∗, CBC∗), for all C ∈ Mn.

Let Mop be this family of operator means. Kubo-Ando proved in 1980 the
following: there exists a bijection from Mop to Fop given by the formula

mf (A,B) := A
1
2 f(A−

1
2 BA−

1
2 )A

1
2 .

Now define

F r
op := {f ∈ Fop|f(0) > 0} F n

op := {f ∈ Fop|f(0) = 0} (2)

Obviously
Fop = F r

op ∪̇ F n
op.

Set

f̃(x) :=
1
2

[
(x + 1)− (x− 1)2

f(0)
f(x)

]
x > 0. (3)

Theorem 2.1. The correspondence f → f̃ is a bijection between F r
op and

F n
op.
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2.4 Fisher information as Riemannian metric

Rao was the first to realize in 1945 that a statistical model M (a family of
densities), under certain conditions, can be considered aa a Riemannian manifold
where Fisher information plays the role of the metric. In such approach the ρ′ are the
tangent vectors and the metric gρ,F (·, ·) is related to Fisher information Iρ according
to the relation

gρ,F (ρ′, ρ′) :=
∫

R

(ρ′)2

ρ
= Iρ.

In the discrete case on the simplex

P1
n :=

{
ρ ∈ Rn

∣∣∣∣∣
∑

i

ρi = 1, ρi > 0

}
,

we have as tangent space

TP1
n =

{
u ∈ Rn

∣∣∣∣∣
∑

i

ui = 0

}
.

The so called Fisher-Rao metric is the scalar product

gρ,F (u, v) :=
∑

i

uivi

ρi
.

2.5 The quantum Fisher information

On the simplex P1
n, Chentsov theorem proves that Fisher metric is the unique

Riemannian metric contracting under any “coarse graining” T (trace-preserving,
positive, linear map).

This means that for any tangent vector X in the point ρ we have

gm
T (ρ)(TX, TX) 6 gn

ρ (X, X)

In the non-commutative case we have a similar result. Set

D1
n := {ρ ∈ Mn|Tr(ρ) = 1, ρ > 0} = Space of faithful states

then we call quantum Fisher information (QFI) a Riemannian metric on D1
n

contracting under any quantum “coarse graining” T (a trace-preserving, completely
positive, linear map), namely we ask that

gm
T (ρ)(TA, TA) 6 gn

ρ (A,A).

Introducing left and right multiplication operators

Lρ(A) := ρA, Rρ(A) := Aρ.

we can state Petz theorem (1996) saying that the formula

〈A,B〉ρ,f := Tr(A ·mf (Lρ, Rρ)−1(B)).
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establishes a bijection between QFI and operator monotone functions.

3 Stam Inequality

3.1 Fisher information and Stam inequality on R

Let us suppose that IX , IY < ∞. The Stam inequality says that if X, Y :
(Ω,F , p) → R are independent random variables then

1
IX+Y

≥ 1
IX

+
1
IY

, (4)

with equality if and only if X, Y are Gaussian.
Stam inequality has been generalized few years ago by Madiman and Barron.

Moreover Voiculescu gave a free version of the result: in the free case one have equality
for the Wigner semicircular distribution. This is not surprising because the Wigner
distribution maximizes free entropy the same way the Gaussian maximize ordinary
entropy. Despite it was clear the group theoretical character of the inequality only
in 1993 it appears a result pointing in this direction: Papathanasiou prove a version
of Stam inequality where the additive group of the real numbers R is substituted by
the group of the integers Z. In such case the equality case correspond to the Poisson
distribution.

3.2 Stam inequality on Lie groups

The first result for a Lie group different from R appear in Ref. [7].
If ρ : S1 → R is a density on the circle the tangential derivative is defined as

DT ρ(z) := lim
h→0

1
h

[
ρ(zeih)− ρ(z)

]
.

It is straightforward to define score and Fisher information as

Jρ :=
DT ρ

ρ
, Iρ := IX := Varρ(Jρ) = Eρ[J2

ρ ]. (5)

It is possible to prove that if X, Y : (Ω,F , p) → S1 are independent random variables
with densities ρ, σ then

1
Iρ∗σ

> 1
Iρ

+
1
Iσ

where one has equality for the uniform distribution case.
How far can we go in this direction?
In Ref. [2] Chirikjian has proved a Stam-like inequality for commuting densities

on a unimodular Lie group. But Jupp has sketched in Ref. [9] a proof that would
hold in any Lie group!

3.3 Stam inequality on finite groups

What happens in the discrete group case? For the cyclic group Zn = {0, 1, . . . , n−
1} score and Fisher information are defined as

Jρ(k) :=
ρ(k)− ρ(k − 1)

ρ(k)
, Iρ := IX := Varf (Jρ) = Eρ[J2

ρ ]. (6)
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Also in this case if X, Y : (Ω,F , p) → Zn are independent random variables then

1
IX+Y

≥ 1
IX

+
1
IY

, (7)

with equality for the uniform ditribution (maximum entropy distribution as usual).
The proof given is based on a standard property of the score: if Z := X + Y then

JZ(Z) = Ep[JX(X)|Z] = Ep[JY (Y )|Z]. (8)

A straightforward extension can be give for finite abelian group but it is an open
problem how to produce a similar result for arbitrary finite groups. Possibly the ideas
from the Jupp work on general Lie groups can help in this direction.

3.4 Quantum Stam inequality

Recently also a quantum version has been given in Ref. [10]. The result appears
promising but it use only (so to say) a particular version of the quantum Fisher
information: the authors consider the Hessian of the Umegaki relative entropy. This
implies they are talking about the Bogoliubov-Kubo-Mori metric.

It is natural to ask: can a general Stam inequality holds for an arbitrary QFI?

3.5 Stam inequality for the Gamma distribution: a mean inequality?

Let R+ := (0 +∞) and f : R+ → R be a differentiable, strictly positive density.
Define

IX :=
∫

R+
(f ′(x)/f(x))2f(x)dx. (9)

Let us suppose that IX , IY < ∞. We may ask: if X, Y : (Ω,F , p) → R+ are
independent random variables is the inequality

1
IX+Y

≥ 1
IX

+
1
IY

, (10)

true?
Let’s see what happens for a particular case. Let α > 0, the Gamma function is

defined as

Γ(α) :=
∫ +∞

0

xα−1e−xdx.

We have the property
Γ(α + 1) = αΓ(α).

Let λ > 0. The Gamma density is defined for x > 0 as

f(x) :=
λα

Γ(α)
xα−1e−λx.

and 0 otherwise. If X ∼ Γ(α, λ) and Y ∼ Γ(β, λ) are independent then X + Y ∼
Γ(α + β, λ). The case α = 1 is known as the exponential distribution.

Proposition 3.1. If α = 1 or α > 2 then

X ∼ Γ(α, λ) =⇒ IX =
λ2

|α− 2| . (11)
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If α 6= 1 and α < 2 then IX = +∞.

Proof i) Case α = 1 that is |α − 2| = 1. Suppose X has as density f(x) = λe−λx.
We have f ′(x) = −λ2e−λx and therefore

IX =
∫ +∞

0

f ′(x)2

f(x)
dx =

∫ +∞

0

λ2f(x)dx = λ2,

that was to be proved.

ii) Case α > 2, let X ∼ Γ(α, λ). We have

f ′(x) = f(x)
[
α− 1

x
− λ

]
,

so that
f ′(x)2

f(x)
= f(x)

(
α− 1

x
− λ

)2

.

For α− 1 > 0, using the functional equation of Γ-function, we have

∫ +∞

0

f(x)
(

α− 1
x

)
dx = (α− 1)

∫ +∞

0

λα

Γ(α)
x(α−1)−1e−λx

= (α− 1)
λ

α− 1

∫ +∞

0

λα−1

Γ(α− 1)
x(α−1)−1e−λx = λ.

Instead for α− 2 > 0 we have

∫ +∞

0

f(x)
(

α− 1
x

)2

dx = (α− 1)2
∫ +∞

0

λα

Γ(α)
x(α−2)−1e−λx

=
(α− 1)2λ2

(α− 1)(α− 2)

∫ +∞

0

λα−2

Γ(α− 2)
x(α−2)−1e−λx = λ2 α− 1

α− 2
.

Therefore if α > 2 one gets

IX =
∫ +∞

0

f ′(x)2

f(x)
dx =

∫ +∞

0

f(x)
(

α− 1
x

− λ

)2

dx

=
∫ +∞

0

f(x)
(

α− 1
x

)2

dx + λ2

∫ +∞

0

f(x)dx− 2λ

∫ +∞

0

f(x)
(

α− 1
x

)
dx

= λ2

(
α− 1
α− 2

)
+ λ2 − 2λ2 =

λ2

α− 2
.

iii) Case α < 2, α 6= 1. We have

∫ +∞

0

f(x)
(

α− 1
x

)2

dx = (α− 1)2
λα

Γ(α)

∫ +∞

0

x(α−2)−1e−λx = +∞

and this ends the proof. ¤
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Proposition 3.2 If X ∼ Γ(α, λ), Y ∼ Γ(β, λ), X, Y are independent and
IX , IY , IX+Y < ∞ then

1
IX+Y

≥ 1
IX

+
1
IY

. (12)

We have the equality iff only one between X and Y has exponential distribution.

Proof First case: α, β > 2. We have

1
IX+Y

=
α + β − 2

λ2
>

α− 2
λ2

+
β − 2
λ2

=
1

IX
+

1
IY

(13)

Second case: α = 1, β > 2. We have

1
IX+Y

=
(β + 1)− 2

λ2
=

1
λ2

+
β − 2
λ2

=
1

IX
+

1
IY

(14)

¤
Note that exponential can be characterized by the maximum entropy property

as it should be in this case.
Since

IαZ =
1
α2

IZ

The Stam inequality for the Gamma family takes the form

mh(IX , IY ) =
2

1
IX

+ 1
IY

> 2IX+Y = 2 · 1
4
· IX+Y

2
=

1
2
Ima(X,Y )

Now let f(x) := x+1
2 so that f(0) = 1

2 . The above inequality takes the form

mf̃ (IX , IY ) > f(0) · Imf (X,Y )

Is this only a coincidence? Or is this just an example of a more general theorem?

4 Rao Inequality for the Harmonic Mean

Let x, y be positive real numbers. The arithmetic, geometric and harmonic means
are defined as

ma(x, y) =
x + y

2
, mg(x, y) =

√
xy, mh(x, y) =

2
1
x + 1

y

.

Suppose X, Y : Ω → (0,+∞) are positive random variables. Then trivially we have
that

E(ma(X, Y )) = ma(E(X),E(Y )).

On the other hand the Cauchy-Schwartz inequality implies

E(mg(X, Y )) 6 mg(E(X),E(Y )).

Working on a result by Fisher on ancillary statistics Rao proved the following result
using Hölder inequality (and the harmonic-geometric inequality).

Proposition 4.1.[16,17]

E(mh(X, Y )) 6 mh(E(X),E(Y )). (15)
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It is natural to ask how general is this result. In the paper[8] it has been
recently proved that the result is true (in a sense to be specified) for any means in
the commutative as well non-commutative setting (the matrix case for the harmonic
mean was anticipated by Prakasa Rao and Rao in Refs. [15,18]).

5 Quantum Uncertainty and Quantum Fisher Information

In Ref. [13] S. Luo started from the Wigner-Yanase information and from an
orthonormal basis {Hj} to introduce the quantity

QWY (ρ) :=
∑

j

IWY
ρ (Hj)

as a measure to describe the quantum uncertainty of the state ρ. Luo proved that
QWY (ρ) is basis independent and moreover that

QWY (ρ) =
∑

j<k

(√
λj −

√
λk

)2

where {λj} is the spectrum of ρ. Applications of the function QWY (ρ) appear also in
Ref. [14].

Remembering that the WY information is the QFI associated to the functions

fWY (x) :=
(

1 +
√

x

2

)2

f̃WY =
√

x

One has

QWY (ρ) = 2
∑

j<k

[
λj + λk

2
−

√
λjλk

]
= 2

∑

j<k

[
ma(λj , λk)−mf̃W Y

(λj , λk)
]

From the above remarks one is leaded to the following questions.

i) For a regular f ∈ Fr
op does the definition

Qf (ρ) :=
∑

j

If
ρ (Hj)

give a basis independent function of the state ρ?

ii) If i) has a positive answer one may ask if

Qf (ρ) = 2
∑

j<k

[
ma(λj , λk)−mf̃ (λj , λk)

]
.

iii) Finally one should study if the properties of the function QWY are specific
or general along the lines of (for example) Ref. [12] where it is proved that
to detect entaglement Wigner-Yanase information and SLD-information have
very different behaviour.
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6 α-Connections, Lp Spheres and Complete Integrability for the
Generalized Proudman-Johnson Equation

Recently Fisher information and α–geometries has been introduced into the realm
of diffeomorphism group, see Ref. [11] and reference therein. In particular, in this
context has been proved that the geodesic equation of the α-connections are given by
a generalized α-Proudman-Johnson equation

utxx + (2− α)uxuxx + uuxxx = 0

and the complete integrability of the case α = 0,±1 has been established.
One should integrate this results with approach in Ref. [3] where α–geometries

are shown to correspond to the geometry of the Lp sphere. In this way one should be
able to explicitly describe geodesics and to discuss complete integrability for any α.

7 α-Geometries and the Diffeomorphism Group

A version of Chentsov theorem on uniqueness of Fisher information ha been
proved in Ref. [1] by Bauer, Bruveris and Michor. The authors establish (under
specific conditions) that invariance under the action of the diffeomorphism group
characterizes the Fisher metric on the densities over a manifold. Since also
α-connections appear in this context (see Ref. [11]) possibly one can imagine an
α-version of the result.

8 The Dynamical Uncertainty Principle in a Classical Setting

Let A1, . . . , An be observables namely s.a. n × n matrices and let ρ be a state.
The expectation is defined as Eρ(A) := Tr(ρA) . We may define covariance an variance
as

Covρ(A,B) := Eρ

(
AB + BA

2

)
− Eρ(A)Eρ(B), Varρ(A) := Covρ(A,A).

The more general form of the uncertainty principle has been given by Robertson
in 1934 as

det {Covρ(Ah, Aj)} > det
{
− i

2
Tr(ρ[Ah, Aj ])

}
, (16)

where h, j = 1, . . . , N . For N = 2 one gets the Schrödinger uncertainty principle

Varρ(A) ·Varρ(B)− Covρ(A,B)2 > 1
4
|Tr(ρ[A,B])|2, (17)

which implies the Heisenberg uncertainty principle

Varρ(A) ·Varρ(B) > 1
4
|Tr(ρ[A,B])|2. (18)

Since the matrix {− i
2Tr(ρ[Ah, Aj ])} é is antisymmetric the uncertainty principle,

should be formulated as

det {Covρ(Ah, Aj)} > 0 N = 2n + 1 (19)
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det {Covρ(Ah, Aj)} > det{− i

2
Tr(ρ[Ah, Aj ])} N = 2n (20)

The left hand side is known as generalized variance and for N odd the uncertainty
principle say the trivial fact that it cannot be negative, a classical fact.

One can prove an uncertainty principle which does not have such inconvenient:

det{Covρ(Aj , Ak)} > det
{

f(0)
2
〈i[ρ,Aj ], i[ρ,Ak]〉ρ,f

}
. (21)

where 〈·, ·〉ρ,f is the QFI associated to the function f according to Petz theorem.
The inequality (21) is known as dynamical uncertainty principle since the r.h.s. is

a measure of the dissimilarity of the quantum trajectories generated by the observables
A1, . . . , AN . Please note that it is the first inequality of this kind giving a non-trivial
bound for an odd number of observables (see Ref. [6]).

The first cases of this inequality are due to S. Luo.
Can the dynamical uncertainty principle have a classical counterpart?
Now, while it is difficult to imagine a classical counterpart for the standard

uncertainty principle the same is not true for the dynamical one, namely for the
inequality 21. Indeed the right hand side of the inequality is the volume given by the
tangent vectors associated to different evolutions of the state ρ with respect to the
different “Hamiltonians” Aj . The volume is that associated to the Fisher information
seen as Riemannian metric. All these object can, in principle, exist in a classical
setting where Poisson brackets are associated to a dynamics of states. What if the
termodynamical uncertainty relations (see Ref. [19] for example) could be derived by
a similar mechanism?

Acknowledgement

It is a pleasure to thank M. De Gosson, F. Hansen, F. Luef, S. Luo and G.
Misiolek for stimulating discussions on the subjects of the present paper. Of course
only the author should be blamed for mistakes and very speculative ideas.

References

[1] Bauer M, Bruveris M, Michor PW. Uniqueness of the Fisher-Rao metric on the space of smooth

densities. 2014. arXiv:1411.5577.

[2] Chirikjian GS. Information-theoretic inequalities on unimodular Lie groups. J. Geom. Mech.,

2010, 2: 119–158.

[3] Gibilisco P, Isola T. Connections on statistical manifolds of density operators by geometry of

non-commutative Lp-spaces. Inf. Dim. Anal. Quan. Prob. Rel. Top., 1999, 2(1): 169-178.

[4] Gibilisco P, Isola T. Fisher information and Stam inequality on a finite group. Bull. Lond.

Math. Soc., 2008, 40(5): 855–862. See also Erratum, Bull. Lond. Math. Soc., 2010, 42(6): 973.

[5] Gibilisco P, Imparato D, Isola T. Stam inequality on Zn. Stat. and Prob. Lett., 2008, 78(13):

1851–1856.

[6] Gibilisco P, Imparato D, Isola T. A Robertson-type uncertainty principle and quantum Fisher

information. Lin. Alg. Appl., 2008, 428(7): 1706–1724.

[7] Gibilisco P, Imparato D, Isola T. A characterization of the uniform distribution on the circle by

Stam inequality. Jour. Ineq. Pure Appl. Math., 2009, 10(2): Article 34, 7.

[8] Gibilisco P, Hansen F. Extensions of Rao’s inequality for the harmonic mean of. Preprint. 2014.

[9] Jupp P. General versions of the information inequalities of van Trees and of Stam.

Communications at the Conference, Information Geometry and its Applications III. University

of Leipzig. 2010.



276 International Journal of Software and Informatics, Volume 8, Issue 3-4 (2014)

[10] König R, Smith G. The entropy power inequality for quantum systems. IEEE Trans. Inform.

Theory, 2014, 60(3): 1536–1548.

[11] Lenells J. and Misiolek, G.: Amari-Chentsov connections and their geodesics on homogeneous

spaces of diffeomorphism groups. J. Math. Sci., 2014, 196(2): 144–151.

[12] Li N, Luo S. Entanglement detection via quantum Fisher information. Phys. Rev. A, 2013, 88:

014301.

[13] Luo S. Quantum uncertainty of mixed states based on skew information. Phys. Rev. A, 2006,

73: 022324.

[14] Luo S, Fu S, Oh CH. Quantifying correlations via the Wigner-Yanase skew information. Phys.

Rev. A, 2012, 85: 032117.

[15] Prakasa Rao BLS. An inequality for the expectation of harmonic mean of random matrices

[Technical Report]. Indian Statistical Institute, Delhi. 1998.

[16] Rao CR. Fisher: the founder of modern statistics. Stat. Sci., 1992, 7: 34–38.

[17] Rao CR. Seven inequalities in statistical estimation theory. Student, 1996, 1: 149–158.

[18] Rao CR. Statistical proofs of some matrix inequalities. Lin. Alg. Appl, 2000, 321: 307–320.

[19] Uffink J, van Lith J. Thermodynamic uncertainty relations. Found. Phys., 1999, 29(5): 655–692.


