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Abstract We revisit the issue of information transfer induced by Unruh effect in a free

Dirac field, where one of the observers (Rob) is uniformly accelerated with respect to his

partner (Alice), each holding a mode of a free Dirac field in Minkowski spacetime. We first

introduce the information loss induced by Unruh effect when the initial states between the

two modes shared by Alice and Rob are any Bell-diagonal states, and give their analytic

expressions. Then from the decorrelating capabilities and measurement-induced correlations

perspectives, we reinterpret the changes of correlations induced by Unruh effect in Dirac

field, which may shed new light on the understanding of Unruh effect from the information

theory viewpoint.
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1 Introduction

The relativistic quantum information theory, which combines the theory of
relativity, quantum theory, and information theory, leads us to a deeper
interpretation of physical world[4,21]. One of the most important examples is that it
supplies a new way to understand the information paradox when black holes are
involved[28,29].

How to understand Unruh effect from the information theory viewpoint is
another fundamental question in the relativistic quantum information theory.
Diverse efforts have been made to investigate the dynamics of teleportation
fidelity[2], quantum entanglement[1,10], quantum discord[7,24], Bell nonlocality[9], and
quantum Fisher information[27] under Unruh effect in Dirac fields or scale fields.
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Most of the above results start with the initial states between the two modes shared
by the inertial observer and the accelerated observer in Minkowski spacetime to be
maximally entangled states. We will generalize the results by starting with any
Bell-diagonal states and investigate the information loss induced by Unruh effect in
a free Dirac field.

To illustrate the Unruh effect, suppose one observer, Alice, stays in an inertial
frame while her partner Rob undergoes uniform acceleration a, each holding a mode
of a free Dirac field in Minkowski spacetime. In order to describe what Rob perceives
from his perspective, we should transform from the Minkowski coordinates (t, z) to
the Rindler coordinates (τ, ξ):

at = eaξ sinh(aτ), az = eaξ cosh(aτ), |z| < t, I

at =−eaξ sinh(aτ), az = −eaξ cosh(aτ), |z| > t, II

which defines the right (region I) and left (region II) Rindler wedges. Usually we refer
to the accelerating observers in regions I and II as Rob and anti-Rob, respectively.
According to the Bogoliubov transformation, the Minkowski vacuum state and single
excitation state can be expressed in terms of Rindler modes

|0k〉→ cos r|0k〉I |0−k〉II + sin r|1k〉I |1−k〉II , (1)

|1k〉→ |1k〉I |0−k〉II . (2)

Here |nk〉I and |n−k〉II (n = 0, 1) refer to the modes corresponding to the Rindler
region I and II, respectively. cos r = (e−2πωc/a + 1)−1/2 with ω = |k|. The parameter
r ∈ [0, π/4) is a monotonically increasing function of the acceleration a ∈ [0,∞), and
r → π/4, as a → ∞. For simplicity, we refer to the particle mode |nk〉I as |n〉I and
the antiparticle mode |n−k〉II as |n〉II .

Note that a particle undergoing eternal uniform acceleration remains constrained
to either Rindler region I or II and has no access to the opposite region, since these
two regions are casually disconnected. When we consider the modes in region I, we
have to trace off the modes in the region II, which implies that Unruh effect could be
considered as a quantum channel from the system R to the system I, denoted by E .
On the other hand, if we trace off the modes in the region I, we get the complementary
Unruh channel Ec from the system R to the system II.

This paper is structured as follows. In Sec. 2, we review and specify the
measures of classical and quantum correlations, which will be our main tools in
quantifying the information loss, the decorrelating capabilities and
measurement-induced correlations for Unruh effect. In Sec. 3, we first introduce the
information loss induced by Unruh effect when the initial states between Alice and
Rob’s modes are any Bell-diagonal states, and then calculate the decorrelating
capabilities for Unruh Channel and complementary Unruh channel. In Sec. 4, we
calculate the measurement-induced correlations of Unruh effect in Dirac field.
Finally, we conclude in Sec. 5.

2 Classical and Quantum Correlations in Bipartite States

Given a bipartite state ρAB shared by two parties A and B with marginal states
ρA := trBρAB and ρB := trAρAB , its amount of total correlations is usually quantified
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by the quantum mutual information[12, 15, 22, 23]

I(ρAB) := S(ρA) + S(ρB)− S(ρAB).

Here S(ρA) := −trρAlog2ρ
A is the von Neumann entropy.

Following Henderson and Vedral[13], the amount of classical correlations in ρAB

is well quantified by

C(ρAB) := max
Π


S(ρA)−

∑

j

qjS(ρA
j )


 ,

where the max is over all measurements Π = {Πj} on the system B, and qj :=
tr(1 ⊗ Πj)ρAB(1 ⊗ Π†j), ρA

j := trB(1 ⊗ Πj)ρAB(1 ⊗ Π†j)/qj . Since I(ρAB) quantifies
the total correlations, the amount of quantum correlations can be defined as

Q(ρAB) := I(ρAB)− C(ρAB).

In particular, if the measurements are restricted to the von Neumann measurements
(orthogonal, one dimensional projections) in the above definition, then one gets the
quantum discord introduced by Ollivier and Zurek[20], which has operational
interpretations and interesting applications in quantum information theory[8,17,25].
Except for some particular states such as the Bell-diagonal states[19], it is usually
difficult to evaluate the classical correlations and the quantum discord, even for
two-qubit states[6,11].

Another important and by far the best studied measure of a particular kind of
quantum correlations (entanglement) is the entanglement of formation[3]:
E(ρAB) := min

∑
k rkE(|ΨAB

k 〉〈ΨAB
k |). Here the min is over all pure state

decompositions ρAB =
∑

k rk|ΨAB
k 〉〈ΨAB

k |, and E(|ΨAB
k 〉〈ΨAB

k |) = S(trB(|ΨAB
k 〉

〈ΨAB
k |) is the entanglement entropy of the pure state |ΨAB

k 〉. In particular, for any
two-qubit state ρAB , its entanglement of formation can be explicitly evaluated as[26]

E(ρAB) = H

({
1−√1− λ2

2
,
1 +

√
1− λ2

2

})
.

Here H({pi}) := −∑
pi log2 pi is the Shannon entropy function of the probability

distribution {pi}, λ := max{0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4} is the concurrence of ρAB ,
λj are the eigenvalues of ρAB ρ̃AB in decreasing order, ρ̃AB := (σy ⊗ σy)ρ̄AB(σy ⊗ σy)
is the time-reversed version of ρAB , while ρ̄AB is the complex conjugate of ρAB (in
matrix form), σy is the Pauli spin matrix.

The elegant Koashi-Winter relation[14]

S(ρB) = C(ρBC) + E(ρAB) (3)

connects the classical correlations in the BC system and the entanglement of
formation in the AB system for any pure tripartite state ρABC .
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3 Decorrelating Capabilities of Unruh Effect

In this section, we first generalize the initial state between Alice and Rob from
maximally entangled state to any Bell-diagonal states. Assume Alice and Rob share
a Bell-diagonal initial state

ρAR =
1
4


1AR +

3∑

j=1

cjσ
A
j ⊗ σR

j


 ,

where 1AR is the identity operator in the Hilbert space of the two qubits A and R,
σA

j and σR
j are the Pauli operators of the qubits A and R, and c = (c1, c2, c3) is a

real vector satisfying the unit trace and positivity conditions of the density operators
ρAR. In the standard basis, ρAR can be expressed as

ρAR =
1
4




c+
3 0 0 c−

0 c−3 c+ 0

0 c+ c−3 0

c− 0 0 c+
3




where c+
3 = 1 + c3, c−3 = 1 − c3, c+ = c1 + c2, and c− = c1 − c2. It can be directly

checked that ρAR has eigenvalues

λAR
1 =

c+
3 + c−

4
, λAR

2 =
c+
3 − c−

4
, λAR

3 =
c−3 + c+

4
, λAR

4 =
c−3 − c+

4
,

from which we readily see the constraints of the coefficients cj are such that λAR
j ∈

[0, 1], for j = 1, 2, 3, 4. The marginal states of ρAR are ρA = 1/2 and ρR = 1/2.
When Alice stays stationary and Rob moves with uniform acceleration a, using

Eqs. (1) and (2), we can rewrite the state ρAR in terms of Minkowski modes for Alice
and Rindler modes for Rob. Since Rob is causally disconnected from the region II,
the only information which is physically accessible to the observers is encoded in the
Minkowski modes A described by Alice and the Rindler modes I described by Rob.
Let I be the identity operation on the system A. Taking the trace over the modes in
region II, we obtain

ρA,I = I ⊗ E(ρAR)

=
1
4




c+
3 cos2 r 0 0 c− cos r

0 c+
3 sin2 r + c−3 c+ cos r 0

0 c+ cos r c−3 cos2 r 0

c− cos r 0 0 c−3 sin2 r + c+
3




,

in the standard basis, with its eigenvalues

λA,I
1,2 =

1− c3 cos2 r ±
√

sin4 r + (c1 + c2)2 cos2 r

4
,

λA,I
3,4 =

1 + c3 cos2 r ±
√

sin4 r + (c1 − c2)2 cos2 r

4
.
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Similarly, taking the trace over the modes in region I, we obtain

ρA,II = I ⊗ Ec(ρAR)

=
1
4




c+
3 cos2 r + c−3 0 0 c+ sin r

0 c+
3 sin2 r c− sin r 0

0 c− sin r c−3 cos2 r + c+
3 0

c+ sin r 0 0 c−3 sin2 r




,

in the standard basis, with its eigenvalues

λA,II
1,2 =

1− c3 sin2 r ±
√

cos4 r + (c1 + c2)2 cos2 r

4
,

λA,II
3,4 =

1 + c3 sin2 r ±
√

cos4 r + (c1 − c2)2 cos2 r

4
,

and the marginal states are

ρA =
1
2
, ρI = E(ρR) =

1
2

(
cos2 r 0

0 1 + sin2 r

)
,

ρII = Ec(ρR) =
1
2

(
1 + cos2 r 0

0 sin2 r

)
.

Consequently, the quantum mutual information in ρAR, ρA,I , and ρA,II can be
calculated as

I(ρAR) = S(ρA) + S(ρR)− S(ρAR)

= 2−H({λAR
j }),

I(ρA,I) = S(ρA) + S(ρI)− S(ρA,I)

= 1 + H({λI , 1− λI})−H({λA,I
j }),

I(ρA,II) = S(ρA) + S(ρII)− S(ρA,II)

= 1 + H({λII , 1− λII})−H({λA,II
j }),

respectively, with λI = cos2 r
2 , λII = sin2 r

2 , and H(·) denotes the Shannon entropy of
the probability distribution.

By the monotonicity of quantum mutual information under operations, we know

I(ρA,I) 6 I(ρAR), I(ρA,II) 6 I(ρAR).

Therefore, we could define the information loss induced by Unruh effect in Dirac field
as

LI(r, c1, c2, c3) := I(ρAR)− I(ρA,I)

= (S(ρA) + S(ρR)− S(ρAR))− (S(ρA) + S(ρI)− S(ρA,I))

= S(ρR) + S(ρA,I)− S(ρAR)− S(ρI)

= 1 + H({λA,I
j })−H({λI , 1− λI})−H({λAR

j }).
We plot LI(r, c1, c2, c3) via r, when c = (1,−1, 1), (0, 0, 1), (1, 0, 0), and (1/3, 1/3, 1/3)
in Fig. 1.
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Figure 1. The information loss induced by Unruh effect.

On the other hand, we define the information loss induced by the complementary
Unruh channel as

LII(r, c1, c2, c3) : = I(ρAR)− I(ρA,II)

= (S(ρA) + S(ρR)− S(ρAR))− (S(ρA) + S(ρII)− S(ρA,II))

= S(ρR) + S(ρA,II)− S(ρAR)− S(ρII)

= 1 + H({λA,II
j })−H({λII , 1− λII})−H({λAR

j }).

We plot LII(r, c1, c2, c3) via r, when c = (1,−1, 1), (0, 0, 1), (1, 0, 0), and (1/3, 1/3, 1/3)
in Fig. 2.
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Figure 2. The information loss induced by the complementary Unruh channel.

Now recall the definition of decorrelating capabilities for a channel E performed
on the state ρB in system B[5,16]. Let ρAB = |ΨAB〉〈ΨAB | be a purification of ρB ,
and I be the identity operation on the system A. Put ρA′B′ = I ⊗ E(ρAB), then the
total decorrelating capability of the channel E is defined by
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D(ρB , E) = I(ρAB)− I(ρA′B′),

which is the loss of total (classical + quantum) correlations in the purification ρAB

of ρB induced by the operation E . The classical decorrelation of E with respect to ρB

is defined as
Dc(ρB , E) = C(ρAB)− C(ρA′B′),

and the quantum decorrelation of E with respect to ρB is defined as

Dq(ρB , E) = Q(ρAB)−Q(ρA′B′).

The intuitive meaning of these decorrelation measures is clear: Dc(ρB , E) quantifies
the loss of classical correlations induced by E , while Dq(ρB , E) quantifies the loss of
quantum correlations. By the definitions, we apparently have

D(ρB , E) = Dc(ρB , E) + Dq(ρB , E).

To get rid of their dependence on ρB , Luo et. al[16] used the maximally mixed
state to define

D(E) = D(
1
dB

, E), Dc(E) = Dc(
1
dB

, E), Dq(E) = Dq(
1
dB

, E),

as measures of the total decorrelating capability, classical decorrelating capability, and
quantum decorrelating capability of E , respectively. Here dB denotes the dimension
of the system B.

When c1 = 1, c2 = −1, c3 = 1, the initial state ρAR is restricted to maximally
entangled state, which is pure and its marginal state is the maximally mixed state
ρR = I

2 . The entanglement of formations for the states ρA,I , ρA,II , and ρI,II have
been calculated in the Ref. [1],

E(ρA,I) =− 1 + sin r

2
log2

1 + sin r

2
− 1− sin r

2
log2

1− sin r

2
,

E(ρA,II) =− 1 + cos r

2
log2

1 + cos r

2
− 1− cos r

2
log2

1− cos r

2
,

E(ρI,II) =− 1 +
√

1− sin2 r cos2 r

2
log2

1 +
√

1− sin2 r cos2 r

2

− 1−
√

1− sin2 r cos2 r

2
log2

1−
√

1− sin2 r cos2 r

2
.

By Koashi-Winter equality (3)[14], we get the expressions for the total, classical, and
quantum correlations for the states ρA,I , ρA,II

I(ρA,I) =S(ρA) + S(ρI)− S(ρA,I)

=1− cos2 r

2
log2

cos2 r

2
− 1 + sin2 r

2
log2

1 + sin2 r

2

+
sin2 r

2
log2

sin2 r

2
+

1 + cos2 r

2
log2

1 + cos2 r

2
,

I(ρA,II) =− S(ρA) + S(ρII)− S(ρA,II)
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=1− sin2 r

2
log2

sin2 r

2
− 1 + cos2 r

2
log2

1 + cos2 r

2

+
cos2 r

2
log2

cos2 r

2
+

1 + sin2 r

2
log2

1 + sin2 r

2
,

C(ρA,I) =S(ρA)− E(ρA,II)

=1 +
1 + cos r

2
log2

1 + cos r

2
+

1− cos r

2
log2

1− cos r

2
,

C(ρA,II) =S(ρA)− E(ρA,I)

=1 +
1 + sin r

2
log2

1 + sin r

2
+

1− sin r

2
log2

1− sin r

2
,

Q(ρA,I) =S(ρI) + E(ρA,II)− S(ρA,I)

=− cos2 r

2
log2

cos2 r

2
− 1 + sin2 r

2
log2

1 + sin2 r

2

− 1 + cos r

2
log2

1 + cos r

2
− 1− cos r

2
log2

1− cos r

2

+
sin2 r

2
log2

sin2 r

2
+

1 + cos2 r

2
log2

1 + cos2 r

2
,

Q(ρA,II) =S(ρII) + E(ρA,I)− S(ρA,II)

=− sin2 r

2
log2

sin2 r

2
− 1 + cos2 r

2
log2

1 + cos2 r

2

− 1 + sin r

2
log2

1 + sin r

2
− 1− sin r

2
log2

1− sin r

2

+
cos2 r

2
log2

cos2 r

2
+

1 + sin2 r

2
log2

1 + sin2 r

2
.

By definition, we know the three kinds of decorrelating capabilities of Unruh
channel are

DI(r) :=D(E) = I(ρAR)− I(ρA,I),

DI
c (r) :=Dc(E) = C(ρAR)− C(ρA,I),

DI
q (r) :=Dq(E) = Q(ρAR)−Q(ρA,I),

and the decorrelating capabilities of the complementary Unruh channel are

DII(r) :=D(Ec) = I(ρAR)− I(ρA,II),

DII
c (r) :=Dc(Ec) = C(ρAR)− C(ρA,II),

DII
q (r) :=Dq(Ec) = Q(ρAR)−Q(ρA,II).

We plot the decorrelating capabilities of Unruh channel and its complementary
channel in Fig. 3 and Fig. 4, respectively.
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Figure 3. The decorrelating capabilities for Unruh channel.
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Figure 4. The decorrelating capabilities for complementary Unruh channel.

4 Measurement-Induced Correlations of Unruh Effect

First recall the definition of measurement-induced correlations for the
measurement E performed on the state ρ = ρB in system B[18]. Let (U, |C〉) be an
unitary realizations of E , that is,

E(ρ) = trCU(ρ⊗ |C〉〈C|)U†,

and
σBC := U(ρ⊗ |C〉〈C|)U†.

By virtue of the classical correlations and quantum correlations of the final
system-apparatus state we define measurement-induced total, classical, and
quantum correlations as

Iρ(E) := I(σBC), Cρ(E) := C(σBC), Qρ(E) := Q(σBC),
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respectively. When ρ = 1/dB is the maximally mixed state, we denote the
corresponding measurement-induced correlations as I(E), C(E) and Q(E),
respectively.

When c1 = 1, c2 = −1, c3 = 1, the initial state is maximally entangled state.
I(ρI,II) is just the measurement-induced total correlations by Unruh Channel. Hence,
the measurement-induced total, classical, and quantum correlations can be calculated
as

I(E) =I(ρI,II)

=S(ρI) + S(ρII)− S(ρI,II)

=H({λI , 1− λI}) + H({λII , 1− λII})−H({1/2, 1/2, 0, 0})

=− cos2 r

2
log2

cos2 r

2
− 1 + sin2 r

2
log2

1 + sin2 r

2

− sin2 r

2
log2

sin2 r

2
− 1 + cos2 r

2
log2

1 + cos2 r

2
− 1,

C(E) =C(ρI,II)

=S(ρI)− E(ρA,I)

=− cos2 r

2
log2

cos2 r

2
− 1 + sin2 r

2
log2

1 + sin2 r

2

+
1 + sin r

2
log2

1 + sin r

2
+

1− sin r

2
log2

1− sin r

2
,

Q(E) =Q(ρI,II)

=I(ρI,II)− C(ρI,II)

=S(ρII)− S(ρI,II) + E(ρA,I)

=− sin2 r

2
log2

sin2 r

2
− 1 + cos2 r

2
log2

1 + cos2 r

2
− 1

− 1 + sin r

2
log2

1 + sin r

2
− 1− sin r

2
log2

1− sin r

2
,

respectively.
We plot the measurement-induced correlations for Unruh effect in Fig. 5.
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Figure 5. Measurement-induced correlations for Unruh effect.
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5 Conclusions

Recently, the issue of how the Unruh effect affects the information content (or
more specifically, correlation measures) in quantum states becomes one of the central
topics in relativistic quantum information thoery. However, most of the results are
restricted to the case that the initial states between the two modes shared by the
inertial observer and the accelerated observer are maximally entanglement states. In
this work, we investigate the more general initial states, any Bell-diagonal states.
We first introduce the information loss induced by Unruh effect when the initial
states are any Bell-diagonal states, and give their analytic expressions. On the other
hand, we use the concepts of the decorrelating capabilities and measurement-induced
correlations of quantum channels to reinterpret the changes of correlations induced
by Unruh effect in a free Dirac field, which may shed new light on the understanding
of Unruh effect from the information theory viewpoint.
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