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Abstract The quantum computational models were proposed to study how quantum

mechanics influence the power of computing models. A lot of works are already done to

extend simpler classical computational models to quantum models like quantum finite

automata[3] and quantum pushdown automata[2,5]. Since the quantum part of a machine is

not easy to implement, it is necessary to think about a computational model which

minimize the quantum part of the model. Motivated by this fact in this paper we introduce

a variation of quantum pushdown automata whose stack and tape head are implemented as

classical devices. We observe that this model is powerful than classical pushdown automata

and some other quantum computational models. Here we also showed that it can recognize

some non context free languages.

Key words: quantum computational models; 1QCFA; QCPA; QCPACT

Joseph J, Dersanambika KS. Quantum pushdown automata with classical stack and

tape head. Int J Software Informatics, Vol.8, No.3-4 (2014): 309–316. http://www.

ijsi.org/1673-7288/8/i199.htm

1 Introduction

Since Richard Feynman conjectured that no classical computer could efficiently
simulate a quantum system, the research on quantum computing has developed and
has achieved some important breakthroughs like al2rithms proposed by Shor and
Grover, which can solve some important problems more efficiently than their known
classical counterparts. But a quantum computer that would be able to implement
these theoretical model is not feasible yet and is still a challenge for Physicist and
Engineers. So in order to study the power of quantum mechanics in computations,
other simpler classical computational models have also been extended to quantum
models such as quantum finite automata[1,3,4] and quantum pushdown automata[2,4].

pushdown automata is a very important finite model of computation in the theory
of automata. The first definition of quantum model of pushdown automata, quantum
pushdown automata was suggested by Moore and Crutchfield in Ref. [4]. But that was
a generalized model of quantum pushdown automata, in which the evolution does not
have to be unitary. But the basic postulates of quantum mechanics imposes a strong
constraint on any quantum machine model that it has to be unitary. So the notion
of quantum pushdown automata was reintroduced in Ref. [2] by giving a definition
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which confirmed the unitary requirement. In that paper it was proved that quantum
pushdown automata can recognize every regular languages and also it can recognize
some non context free languages. But that model contains a quantum tape head and
a quantum stack. So it requires O(n) qubits to store the information.

Since the quantum resources are not cheap and operations are not easy to
implement it is necessary to minimize the size of the quantum part. One such
“hybrid” variation of pushdown automata was introduced in Ref. [5]. In that paper
they introduced and studied about quantum pushdown automata with classical
stack. They proved that quantum pushdown automata with classical stack can
recognize every deterministic context free languages and also it can recognize some
non context free languages. But that model also could implemented with dlogne
qubits of information, where n is the input length. That is the size of the quantum
part of this computational model also depends on the length of the input.

It would be nicer to think about a quantum model in which the size of quantum
part does not depends on the length of the input. Motivated by this idea in this
paper we introduce quantum pushdown automata with classical stack and tape
head. Informally it can be described as a pushdown automata that has access to a
fixed size quantum register upon which it can perform quantum transformations and
measurements. In this paper we proved that this model can recognize every context
free languages and languages recognized by one way quantum finite automata with
classical states[6]. We also showed that it can simulate quantum pushdown
automata with classical stack. At the end of this paper we give an example of a non
context free language recognized by this model.

2 Preliminaries

In this section we recall the definitions of pushdown automata, 1QCFA and
QCPA.

Definition 2.1. A deterministic pushdown automata is a 7-tuple

M = (Q,Σ,Γ, δ, q0, Z, F )

where,

• Q is a finite set of states;

• Σ is a finite set of input alphabet;

• Γ is an alphabet, called stack alphabet;

• q0 ∈ Q is the initial state;

• Z ∈ Γ is the stack bottom symbol;

• F is the set of final states;

• δ is a mapping from Q× Σ× Γ to finite subsets of Q× Γ∗.

The configuration of a PDA at a given instant is denoted by (q, w, γ), where q is
a state, w is the string of input symbol and γ is the string of stack symbols.
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For a PDA M = (Q,Σ,Γ, δ, q0, Z, F ) the language accepted by the PDA is defined
as
L(M) = {w|(q0, w, Z) `∗ (p, ε, γ) for some p ∈ F and γ ∈ Γ∗}.
A PDA recognize the set of deterministic context free languages.

Definition 2.2. A one-way quantum finite automata with quantum and
classical states (1QCFA) is a 10-tuple

M = (Q,S, Σ,Θ,∆, δ, |q0 >, s0, Sacc, Srej)

where,

• Q is a set of quantum states;

• S is the set of classical states;

• Σ finite set of alphabet including the left end marker # and right end marker $;

• |q0 >∈ Q is the initial quantum state;

• s0 ∈ S is the initial classical state; Sacc ⊂ S and Srej ⊂ S the sets of classical
accepting and rejecting states respectively with Sacc ∩ Srej = ∅ ;

• Θ(s, γ) is the unitary transformation on the current quantum state for each (s, γ) ∈
S × Σ;

• ∆(s, γ) corresponds to measurement of the quantum state;

• δ is the transition function of the classical states. δ(s, γ) is a mapping from the set
of possible results of measurement to S.

Let L ⊂ Σ∗ and 0 6 ε < 1/2 then 1QCFA M recognize L with one sided error ε if

• For any w ∈ L, P [Macceptsw] = 1 and

• For any w /∈ L, P [Mrejectsw] > 1− ε.

Definition 2.3. A Quantum Pushdown Automata with classical stack
(QCPA) is a 11-tuple

M = (Q,S, Σ,Γ,Θ, δ, q0, s0,O, Sacc, Srej)

where,

Q and S are the finite sets of quantum and classical states;

Σ and Γ are as defined in the above definitions;

q0 and s0 are the initial quantum state and classical state respectively.

O = ⊕iEi is the observable;

Sacc ⊂ S and Srej ⊂ S are the sets of accepting states and rejecting states
respectively such that Sacc ∩ Srej = O;
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Θ is the quantum state transition function from Q×Σ×Γ to Q×{0, 1} and δ(s, γ),
where (s, γ) ∈ S × Γ is the classical state transition function from set of all possible
results of measurement to S × Γ∗.

Language recognition of QCPA is same as that of 1QCFA.

3 Definitions

Informally, we can describe a QCPACT as classical pushdown automata that has
access to a quantum register, upon which it can perform quantum transformations
and measurements. The transformations and measurements are determined by a local
description of the classical portion of the machine, and the result of measurements
can determine the manner in which the classical part of the machine evolves. Now
we give a formal definition of a QCPACT as follows.

Definition 3.1. A quantum pushdown automata with classical stack and tape
head is defined as a 11-tuple

M = (Q,S, Σ,Γ,Θ, δ, q0, s0,O, Sacc, Srej)

where,

• Q is the set of quantum states.

• S is the set of classical states.

• Σ is the finite set of alphabet including left end marker # and right end marker $;

• Γ is the set of stack symbols including the bottom symbol Z;

• Θ is the evolution operator for the quantum states;

• δ is the transition function for the classical states;

• q0 is the initial quantum state;

• s0 is the initial classical state;

• Sacc ⊂ S and Srej ⊂ S are the sets of accepting tates and rejecting states
respectively such that Sacc ∩ Srej = O;

• O = ⊕iEi is the observable.

The function Θ specifies the evolution of the quantum states of the system. For each
(s, α, β) ∈ S \(Sacc∪Srej)×Σ×Γ, Θ(s, α, β) is the unitary transformation performed
on the current quantum state of the system. The transition function for the classical
part of the system δ(s, α, β) is a mapping from the set of all possible results of the
measurement to S×Γ∗×{0, 1}. It is assumed that δ is defined so that the tape head
never moves right when it scans the right end marker.

On a given input x a QCPACT M is to operate as follows. Initially the
classical state of M is in s0 and quantum state of M is in q0. The tape head of M is
scanning the square indexed by 0. The tape squares indexed by 1, 2, · · · , |x| = n

contains x1, x2, · · · , xn while the square indexed by 0 and n + 1 contains end
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markers # and $ respectively. On each step the quantum state changed according to
Θ(s, α, β). Then we measure the quantum state of the machine with respect to the
observable O. According to the possible result of the measurement the classical
state, stack symbol and tape head position changed using δ(s, α, β). If we do not
need a measurement assume that we apply identity operator on the quantum states
and result of measurement is ε with certainty. Since the results obtained from each
measurements are probabilistic the transition among the classical part of a given
QCPACT may be probabilistic as well.

A computation is assumed to halt if and only if an accepting or rejecting classical
state is entered. Let L ⊂ Σ∗ and 0 6 ε < 1/2. A QCPACT M recognize L with one
sided error if

1. P [Macceptingw] = 1 for every w ∈ L and

2. P [Macceptingw] > 1− ε for every w /∈ L.

Other notions of language recognition such as two sided error, zero error etc. may be
defined analo2usly, but in this paper we will consider only one sided error.

4 On the Power of QCPACT

In this section we show that QCPACT can recognize languages that are
recognizable by PDA, 1QCFA and QCPA. Also we show that QCPACT can
recognize the non-context free language {anbncn| n > 0}.

Theorem 4.1. QCPACT can recognize every context free languages.

Proof: We know that for every context free language there exist a PDA
recognizing the language. So we prove this theorem by constructing a QCPACT
which will simulate the PDA which recognize the given context free language. Let
M1 = (S1,Σ1,Γ1, δ1, s1, Z, F ) be the given PDA. Then we construct the QCPACT

as follows.
M = (Q,S, Σ,Γ,Θ, δ, q0, s0,O, Sacc, Srej)

Q = {q0}, S = S1 ∪ {srej}, Σ = Σ1, Γ = Γ1,

O = E, where E = span{|q0 >} Sacc = F , Srej = {srej}
The evolution operator is defined as Θ(s, α, β) = I, where I is the identity operator,
for every (s, α, β) ∈ S \ (Sacc ∪ Srej)× Σ× Γ. Classical part transition function δ is
defined as

δ(s, α, β)(q) =





(δ1(s, α, β), Z, 1), if α 6= $

(δ1(s, α, β), Z, 0), if α = $ and δ1(s, α, β) ∈ F

(srej , γ, 0), if α = $ and δ1(s, α, β) /∈ F

where q is result of measurement.
In this construction of the QCPACT the quantum state remains the same till

the end of the process since the evolution operator we applied on the quantum state
is identity operator. The classical part transition function is working according to
the transition function of the pushdown automata that recognize the given context
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free language. The tape head is moving right till the end marker is reached or the
classical state of the machine enters the final state. Thus the constructed QCPACT

will recognize the given context free language. ¤
Theorem 4.2. QCPACT can recognize every language recognizable by

1QCFA

Proof: Let M1 = (Q1, S1,Σ1,Θ1,O1, δ1, q0, s0, Sacc, Srej) be a 1QCFA. Then we
can construct a QCPACT as follows which can simulate the given 1QCFA.

M = (Q,S, Σ,Γ,Θ, δ, q0, s0,O, Sacc, Srej)

Q = Q1, S = S1, Σ = Σ1, Γ = {Z}
Unitary transformation and classical part transition function is defined as follows.

Θ(s, α, β) = Θ1(s, α), for every (s, α, β) ∈ S \ (Sacc ∪ Srej) × Σ× Γ

δ(s, α, β)(q) =

{
(δ1(s, α), Z, 1), α 6= $

(δ1(s, α), Z, 0), α = $

The quantum states of the QCPACT M will change according to the
evolutionary operator of the 1QCFA. The classical part will change according to
the classical part transition function of M1. There is no change will occur on the
stack symbol during the transition. Thus the QCPACT M will clearly recognize
the language recognized by M1. ¤

Theorem 4.3. A QCPA can be simulated by a QCPACT .

Proof: Let
M1 = (Q1, S1,Σ1,Γ1, δ1,Θ1, q0, s0,O1, Sacc, Srej)

be the QCPA. We can construct the QCPACT which will simulate the given QCPA

as follows.
M = (Q,S, Σ,Γ,Θ, δ, q0, s0,O, Sacc, Srej)

Q = Q1, Σ = Σ1, S = S1, Γ = Γ1. The unitary transformation and classical part
transition function can be defined as follows.

Θ(s, α, β) = π1(Θ1(q, α, β))

where q is the possible result of measurement.

δ(s, α, β)(q) = (δ1(s, α, β), π2(q, α, β))

where q is the possible result of measurement. π1 and π2 are the projection map to
the first and second component respectively. ¤

The following example shows that QCPACT can also recognize some non-context
free language.

Example 1. For any positive integer N > 0 there exist a QCPACT that
accepts any x ∈ {anbncn| n > 0} with certainty and rejects
x /∈ {anbncn| n > 0} with probability at least 1− 1/N .
We can construct the QCPACT as follows For any positive integer N define MN as

MN = (Q,S, Σ,Γ,Θ, δ, q0, s0,O, Sacc, Srej)
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where,

Q = {q0, q1}
∪ {rj,k| 1 6 j 6 N, 0 6 k 6 j}
∪ {r′j,k| 1 6 j 6 N, 0 6 k 6 N − j + 1}
∪ {sj,k| 1 6 j 6 N, 0 6 k 6 j}
∪ {s′j,k| 1 6 j 6 N, 0 6 k 6 N − j + 1}
∪ {s′′j | 1 6 j 6 N}

Σ = {a, b, c}, Γ = {A,B, Z}, Qacc = {S′′N}
Qrej = {q1}

∪ {sj,k| 1 6 j 6 N, 0 6 k 6 j}
∪ {s′j,k| 1 6 j 6 N, 0 6 k 6 N − j + 1}
∪ {s′′j | 1 6 j < N}

Enon1 = span{|q0 >}
Enon2 = span{|q > |q ∈ Qn(Qacc ∪Qrej ∪ {q0})}
Eacc = span{|q > |q ∈ Qacc}
Erej = span{|q > |q ∈ Qrej}

O = Enon1 ⊕ Enon2 ⊕ Eacc ⊕ Erej .
The working of MN is described by the following algorithm.

1. If the current symbol is # move the tape head one square to the right.

2. If the current symbol is b or c reject.

3. If the current symbol is $ accept.

4. While the current symbol is a push A to the stack and move the tape head one
square to the right.

5. If the current symbol is c or $ reject.

6. If the current symbol is b apply 1√
N

∑N
j=1 |rj,0 > to the quantum state.

7. Pop A from the stack and stay in the same tape head position.

8. Change the quantum state |rj,0 > to |rj,1 mod j+1 >.

9. While the result of measurement is not |rj,0 > change the quantum state |rj,k >

to |rj,k+1 mod j+1 > and measure the quantum state.

10. Move the tape head one square to the right. If the current symbol is b 2to 7.

11. If the current symbol is c and stack is nonempty reject.

12. If the current symbol is c and stack is empty change the quantum state |rj,0 >

to |r′j,0 > and stay in the same tape head position.

13. Change the quantum state to |r′j,1 mod N−j+1 >.
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14. While the result of measurement is not |r′j,0 > stay there in the same tape head
position and change the quantum state |r′j,k > to |r′j,k+1 mod N−j+1 >.

15. Move the tape head one square to the right. If the current symbol is c 2to 13.

16. If the current symbol is a or b then reject.

17. If the current symbol is $ apply 1√
N

∑N
l=1 exp( 2πi

N jl)|s′′l > to the quantum state.

18. If the result of measurement is |S′′N >, accept otherwise reject.

5 Conclusion

In this paper we introduce and study about the quantum pushdown automata
model QCPACT which is a pushdown automata with a constant quantum register.
We proved that QCPACT can simulate the quantum pushdown automata with
classical stack, whose size of quantum part does not depends on the input length.
And also we give an example of a non context free language {anbncn | n > 0}
recognized by QCPACT .

It is still a future work to study whether QCPACT is equivalent to QCPA. And
also we want to check whether the power of QCPACT can increase by adding a two
way tape head.
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