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Abstract We propose a simple framework of algebraic constructions for software

specification, modular design and development. Algebraic constructions generalise

(parameterised) modules by allowing on one hand a rather arbitrary collection of elements

to form the parameter and on the other hand dependencies between the module elements

to be spelled out explicitly. Algebraic constructions are specified in a very natural way by

means of ordinary algebraic specifications. They are combined using a sum operation

which captures as special cases various operations on (parameterised) modules offered by

standard specification and development frameworks. We show the expected composability

result for the sum of algebraic constructions and of their specifications.
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1 Introduction

Spectral[10] was an experiment in specification language design in which both

programs (modelled as algebras) and their specifications, both simple and

parameterised, were viewed as first-class entities and could be arbitrarily used as

parameters for each other. This extended to higher-order parameterisation, where

entities like specifications parameterised by programs, specifications parameterised

by parameterised programs, programs parameterised by specifications that in turn

are parameterised by programs, etc., could be expressed.

The power of Spectral made it possible to present various complex examples

in a rather appealing way, but the full ramifications of this power meant that the

details of the semantics, including the extent to which static typechecking would be

possible, had to be left for subsequent work. Part of this was to be given by the kernel

language for higher-order parameterisation presented in Refs. [15,17], amounting to a

subset of Spectral, which was equipped with a calculus for reasoning about higher-

order parameterised programs and their specifications. But this calculus was later

shown to suffer from serious technical problems[1]. A “stratified” version in which

these problems are absent is presented in Ref. [18].
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We take a different approach here, somewhat in the spirit of Ref. [9]. We

enhance parameterised programs[8,15] and their specifications by relaxing the

requirement that the parameters of a module are, in a sense, complete (i.e., form an

algebra over a parameter signature) and by introducing an explicit record of the

possible dependencies between the various entities in the module. As it turns out,

we may in this way capture some complex dependencies between entities within a

module, which typically require the use of higher-order parameterisation in more

standard approaches.

Driven by this idea, we formalise the notion of an algebraic construction

signature, of an algebraic construction over such a signature, and of specifications of

algebraic constructions. We show that the category of algebraic construction

signatures is finitely cocomplete, and that the colimits of such signatures admit

amalgamation; this allows us to combine compatible algebraic constructions.

Specifying algebraic constructions turns out to be very simple — any mechanism to

specify the underlying algebras will suffice. Colimits of algebraic construction

signatures allow us to define a sum operation both at the level of algebraic

constructions and at the level of their specifications. Crucially, the compatibility of

sums at these two levels can be shown.

The framework presented here is based on the ideas of the first author, see

Ref. [12] where they are worked out somewhat differently, but in greater generality

and detail.

Special acknowledgement: We dedicate this paper to Bernd Krieg-Brückner, our

professional colleague, long-term collaborator and good personal friend — all the best,

Bernd! (DTS, AT)

2 Algebraic Construction Signatures

We will work here with the usual definition of algebraic (many-sorted)

signatures — see for instance[18] for a more detailed presentation — except that we

restrict attention to finite signatures and assume that all the symbols in a signature

are unambiguous. In particular, sort names and operation names are distinct, and

operation names are not overloaded. Ad hoc overloading of operation names could

be added at the expense of the need for extra decoration; on the other hand, adding

some form of parametric polymorphism would lead us to a different and interesting

framework, where overloaded operations with the same names would have to behave

in the same way w.r.t. the extra structure to be introduced below and its semantic

consequences. Rather than trying to treat this in detail here, we view this option as

a special case of a further, more general development, where the ideas presented are

recast in the framework of an arbitrary institution[7,12].

Hence, an algebraic signature is a quadruple Σ = ⟨S,Ω, arity , sort⟩, where S and

Ω are finite disjoint sets of sort and operation names, respectively, and arity : Ω→ S∗,

sort : Ω→ S give the profile of each operation name. Given an algebraic signature Σ as

above, we write f : s1 × · · · × sn → s for f ∈ Ω, arity(f) = s1 · · · sn and sort(f) = s.

Algebraic signature morphisms are defined as usual: σ : Σ → Σ′ maps sort names in

Σ to sort names in Σ′ and operation names in Σ to operation names in Σ′ preserving

their arities and result sorts. With the usual component-wise composition, this yields
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the well-known, finitely cocomplete category AlgSig of algebraic signatures and their

morphisms. The obvious functor Symb : AlgSig → Set1, which maps any Σ =

⟨S,Ω, arity , sort⟩ to Symb(Σ) = S ∪ Ω and any signature morphism to its underlying

function, is cocontinuous.

To obtain algebraic construction signatures, we enhance algebraic signatures as

above with information of two kinds. First, we indicate which symbols in a signature

are considered defined and distinguish them from the remaining assumed symbols.

Second, we introduce a dependency relation on the symbols, given by a strict order

(that is, a relation that is transitive and irreflexive). The informal intuition is that an

algebraic construction (to be introduced below) expects definitions for the assumed

symbols to be obtained from the outside, while defining itself its defined symbols.

Moreover, the definition for a symbol may use only the symbols below it in the

dependency ordering.

Hence, an algebraic construction signature (or construction signature for short)

is a triple S = ⟨Σ, D,≺⟩, where Σ is an algebraic signature, D ⊆ Symb(Σ) is a set of

symbols defined in S, and ≺ ⊆ Symb(Σ)× Symb(Σ) is a strict order of dependency

in S such that for each f : s1 × · · · × sn → s in Σ, s1 ≺ f , . . . , sn ≺ f , s ≺ f . The

required dependencies s1 ≺ f , . . . , sn ≺ f , s ≺ f , for f : s1 × · · · × sn → s, are called

basic in Σ.

We say that a construction signature S = ⟨Σ, D,≺⟩ is empty if D = ∅; it is

complete if D = Symb(Σ).

Consider a construction signature S = ⟨Σ, D,≺⟩. Let X ⊆ Symb(Σ) be a set

of symbols that are mutually independent w.r.t. ≺. The dependency structure below

X is defined as the construction signature SX⇓ = ⟨Σ′, D′,≺′⟩, where Σ′ is the unique

subsignature of Σ with Symb(Σ′) = {y ∈ Symb(Σ) | y ≺ x for some x ∈ X}, D′ =

D∩Symb(Σ′) and ≺′ is the restriction of ≺ to Symb(Σ′). Then X ∩Symb(Σ′) = ∅.
For any setX ⊆ Symb(Σ) of symbols, the dependency structure of X is defined as

the construction signature SX↓ = ⟨Σ′′, D′′,≺′′⟩, where Σ′′ is the unique subsignature

of Σ with Symb(Σ′′) = {y ∈ Symb(Σ) | y ∈ X or y ≺ x for some x ∈ X}, D′′ = D∩
Symb(Σ′′) and ≺′′ is the restriction of ≺ to Symb(Σ′′).

Given x ∈ Symb(Σ), we write Sx⇓ and Sx↓ for S{x}⇓ and S{x}↓, respectively.
Given two construction signatures S1 = ⟨Σ1, D1,≺1⟩ and S2 = ⟨Σ2, D2,≺2⟩, an

(algebraic) construction signature morphism σ : S1 → S2 is an algebraic signature

morphism σ : Σ1 → Σ2 such that:

– defined symbols are preserved: σ(D1) ⊆ D2,

– dependencies are preserved: σ(≺1) ⊆ ≺2,

– dependency down-closures are reflected: for all a1 ∈ Symb(Σ1) and

b2 ∈ Symb(Σ2) such that b2 ≺2 σ(a1) there exists b1 ∈ Symb(Σ1) such that

b1 ≺1 a1 and σ(b1) = b2.

With the usual composition, this yields the category ConSig of construction

signatures and their morphisms, with the obvious projection functor

Sig : ConSig→ AlgSig.

1Set is the usual category of sets; we will also refer to SET, the (quasi-)category of “large sets”

(classes, discrete categories).
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Fact 2.1. The category ConSig is finitely cocomplete, and the functor

Sig : ConSig→ AlgSig is cocontinuous.

Proof Coproducts of construction signatures in ConSig are essentially given as

disjoint unions of the underlying algebraic signatures, dependency relations and sets

of defined symbols. Hence, they are preserved by Sig : ConSig→ AlgSig.

Coequalisers are easy to build: consider construction signatures S1 =

⟨Σ1, D1,≺1⟩ and S2 = ⟨Σ2, D2,≺2⟩, and construction signature morphisms

σ1, σ2 : S1 → S2. The coequaliser of σ1, σ2 is σ : S2 → ⟨Σ2/≡, σ(D2), σ(≺2)⟩, where
≡ is the least equivalence relation on Symb(Σ2) such that σ1(x) ≡ σ2(x) for all

x ∈ Symb(Σ1), Σ2/≡ is the obvious quotient of Σ2 by ≡, and σ maps each symbol

y ∈ Symb(Σ2) to its equivalence class [y]≡.

First notice that if for some x ∈ Symb(Σ1), y1 = σ1(x) and y2 = σ2(x), and

y′1 ≺2 y1, then since σ1 reflects dependency down-closures, there is x′ ∈ Symb(Σ1)

such that x′ ≺1 x and σ1(x
′) = y′1, and hence σ2(x

′) ≺2 y2 since σ2 preserves

dependencies. This gives the basis for an easy inductive proof that for any y1, y2, y
′
1 ∈

Symb(Σ2) such that y1 ≡ y2 and y′1 ≺2 y1 there exists y′2 ∈ Symb(Σ2) such that

y′2 ≡ y′1 and y′2 ≺ y2.

We argue now that σ(≺2) is indeed a strict order. Suppose that there exists

y1 ∈ Symb(Σ) such that for some y2 ∈ Symb(Σ), y1 ≺2 y2 and y1 ≡ y2, and

consider such a minimal (w.r.t. ≺2) y1. By the above remark though, we have then

y′1 ∈ Symb(Σ2) such that y′1 ≡ y1 and y′1 ≺2 y1, which contradicts minimality of

y1. Hence, σ(≺2) is irreflexive. Consider then y1, y2, y3, y4 ∈ Symb(Σ2) such that

y1 ≺2 y2, y2 ≡ y3, y3 ≺2 y4. By the above remark again, there is y′1 ∈ Symb(Σ2)

such that y′1 ≡ y1 and y′1 ≺2 y3, hence also y′1 ≺2 y4, which shows that σ(≺2) is

transitive.

Hence, ⟨Σ2/≡, σ(D2), σ(≺2)⟩ is a construction signature. Moreover, by

definition, σ : S2 → ⟨Σ2/≡, σ(D2), σ(≺2)⟩ preserves defined symbols and

dependencies, and reflects dependency down-closures, and so is a construction

signature morphism. Its coequaliser property now follows easily from the fact that

σ : Σ2 → Σ2/≡ is a coequaliser of σ1, σ2 : Σ1 → Σ2 in AlgSig, and that for any

construction signature morphism σ′ : Σ2 → Σ′ with σ1;σ
′ = σ2;σ

′, the unique

signature morphism σ0 : Σ2/≡ → Σ′ such that σ;σ0 = σ′ is in fact a construction

signature morphism. �
The following lemma follows directly from the definition of a construction

signature morphism:

Lemma 2.2. Let σ : S1 → S2 be a construction signature morphism as

above. Then for each symbol x ∈ Symb(Sig(S1)), σ(Sig(Sx1⇓)) = Sig(Sσ(x)2 ⇓) and

σ(Sig(Sx1↓)) = Sig(Sσ(x)2 ↓). �
A subsignature of a construction signature S = ⟨Σ, D,≺⟩ is a construction

signature S1 = ⟨Σ1, D1,≺1⟩ such that Σ1 is a subsignature of Σ, the inclusion

ι : Σ1 ↪→ Σ is a construction signature morphism ι : S1 → S and

D1 = D ∩ Symb(Σ1) (it follows that ≺1 is ≺ restricted to Symb(Σ1)). Clearly,

given a set X ⊆ Symb(Σ) of symbols in S, SX↓ is a subsignature of S; if the

symbols in X are independent then SX⇓ is also a subsignature of SX↓ (as well as of
S).
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Example 2.3 (Ordinary signatures and algebras). A usual algebraic

signature may be captured as a complete construction signature by marking all

symbols as defined (so that a complete construction signature is obtained) and

taking basic dependencies only. �

Example 2.4 (Parameterised modules). In many standard frameworks

(see for instance Casl[4,13] or Act One[6] — the latter is somewhat more general,

but this does not change the point made below) a parameterised module (or unit

in Casl) has a “type” that identifies a parameter signature ΣP and extends it to a

result signature ΣR along a signature inclusion ι : ΣP ↪→ ΣR. Here this is captured

by a construction signature Sι = ⟨ΣR, D,≺⟩, where D = Symb(ΣR) \ Symb(ΣP )

and ≺ is generated by basic dependencies in ΣR plus dependencies p ≺ r for all

p ∈ Symb(ΣP ), r ∈ D.

Parameterisation of this kind restricts attention to constructions where the

assumed symbols form a subsignature. Clearly, this is not necessarily the case with

construction signatures. We do allow construction signatures where an operation

symbol is assumed (i.e., under the above analogy, is part of the parameter) even if

some of the sorts in its profile are defined (i.e., under the above analogy, are defined

by the construction, and are not part of the parameter). �

Example 2.5 (Complex dependencies). A more complex construction

signature is S0 = ⟨Σ0, D0,≺0⟩, where the algebraic signature Σ0 has a unique sort Nat ,

unary operation succ : Nat → Nat , and constants zero, a, b, c, d, e : Nat , D0 = {a, d, e}
and ≺0 is generated by basic dependencies as well as succ ≺0 a, zero ≺0 a, a ≺0 b,

a ≺0 c, b ≺0 d, c ≺0 d, b ≺0 e, c ≺0 e. This may be depicted as follows, underlining

the assumed symbols:

d : Nat e : Nat

b : Nat c : Nat

a : Nat

zero : Nat succ : Nat → Nat

Nat

������) ?
PPPPPPq?

Q
QQs

�
��+

�
��+

Q
QQs

Q
QQs

�
��+

The signature above illustrates more complex dependencies that may be captured

in the framework proposed. We will use it to illustrate the technical issues such

dependencies may involve. We refrain here from presenting any more practically

meaningful case study, to keep the example relatively compact and hopefully easy to

follow.

The dependencies here cannot result as the dependencies given by the standard

parameterisation mechanism as sketched in Example 2.4. Under some standard

approaches (e.g., Spectral[10]) we could resort to higher-order parameterisation,

where we might capture the intended dependencies by the following “type” (listing
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just the symbols of the algebraic signatures involved):

{Nat , zero, succ} ×
(({Nat , zero, succ} → {Nat , zero, succ, a})→ {Nat , zero, succ, a, b, c})

→ {Nat , zero, succ, a, b, c, d, e}

We will not attempt any formal claims concerning this analogy. Let us just note

rather informally that constructions over the above construction signature will

correspond only to what may be thought of as “cumulative” modules (where the

result accumulates the parameters and their applications to other parameters one by

one), which is a rather restrictive form of higher-order modules of the above

higher-order type. �

3 Algebraic Constructions

The overall idea is that an algebraic construction over a construction signature

S = ⟨Σ, D,≺⟩ gives a way to provide a meaning for any defined symbol in D in

terms of the meanings of the symbols in the dependency structure below this symbol.

Our starting point is the usual definition of an algebra, which gives interpretations to

symbols in an algebraic signature, see for instance Ref. [18].

Given an algebraic signature Σ = ⟨S,Ω, arity , sort⟩, Alg(Σ) stands for the class of

all Σ-algebras, defined as usual, except that we restrict attention to algebras with non-

empty carriers to avoid minor technical problems in the sequel, which are by now well-

understood, see Ref. [19]. In fact, with the usual notion of Σ-homomorphism, Alg(Σ)

is a category, but we may disregard homomorphisms for our purposes here. As usual,

each signature morphism σ : Σ → Σ′ determines a reduct functor σ : Alg(Σ′) →
Alg(Σ),2 which is injective for surjective σ. This yields a functor Alg : AlgSigop →
SET, which is continuous, and in particular maps signature pushouts to pullbacks

in SET, so that we have the so-called amalgamation property : given a pushout in

AlgSig

Σ

Σ1 Σ2

Σ′

@
@

@I

�
�
��

�
�
��

@
@

@I

σ1 σ2

τ1 τ2

and algebras A1 ∈ Alg(Σ1) and A2 ∈ Alg(Σ2) such that A1 σ1 = A2 σ2 , there exists

a unique algebra A′ ∈ Alg(Σ′) such that A′
τ1 = A1 and A′

τ2 = A2. When the

pushout diagram is evident from the context, we write A1 ⊕A2 for A′ and call it the

amalgamation of A1 and A2. See Ref. [18] for a more detailed presentation.

Now, given an algebraic construction signature S = ⟨Σ, D,≺⟩, an algebraic

S-construction (or S-construction for short) is a class C ⊆ Alg(Σ) of Σ-algebras

such that for any defined symbol x ∈ D and any two algebras A,A′ ∈ C, if

2For a class A′ ⊆ Alg(Σ′) of Σ′-algebras, A′
σ = {A′

σ | A′ ∈ A′} is the image of A′ w.r.t. σ .

Reducts ι w.r.t. a signature inclusion ι : Σs ↪→ Σt are denoted by Σs .
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A Sig(Sx⇓) = A′
Sig(Sx⇓) then A Sig(Sx↓) = A′

Sig(Sx↓). In other words: in a

construction, the interpretation of each defined symbol is unambiguously determined

by the interpretation of the dependency structure below this symbol. However, the

interpretation of assumed symbols remains unconstrained, and may vary within any

construction.

A trivial S-construction is the empty class of algebras (which is an

S-construction).
Lemma 3.1. Let σ : S1 → S2 be a construction signature morphism from

S1 = ⟨Σ1, D1,≺1⟩ to S2 = ⟨Σ2, D2,≺2⟩. For any S2-construction C2 ⊆ Alg(Σ2), the

σ-reduct C1 = C2 σ ⊆ Alg(Σ1) is an S1-construction.
Proof Let x ∈ D1 be a defined symbol in S1. Given two Σ2-algebras A2, A

′
2 ∈ C2

such that (A2 σ) Sig(Sx
1⇓) = (A′

2 σ) Sig(Sx
1⇓), by Lemma 2.2 we have A2 Sig(Sσ(x)

2 ⇓) =

A′
2 Sig(Sσ(x)

2 ⇓). Hence, since C2 is an S2-construction, A2 Sig(Sσ(x)
2 ↓) = A′

2 Sig(Sσ(x)
2 ↓),

and consequently, using Lemma 2.2 again, (A2 σ) Sig(Sx
1↓) = (A′

2 σ) Sig(Sx
1↓). �

We write Con(S) for the class of all S-constructions. By Lemma 3.1, a

construction signature morphism σ : S1 → S2 determines a reduct function

σ : Con(S2)→ Con(S1). This yields a functor Con : ConSigop → SET.

We will work now to establish an amalgamation property for constructions. For

the rest of this section consider a construction signature pushout in ConSig and its

projection on algebraic signatures, which is a pushout in AlgSig:

S

S1 S2

S ′

@
@

@I

�
�
��

�
�
��

@
@

@I

σ1 σ2

τ1 τ2

Σ

Σ1 Σ2

Σ′

@
@

@I

�
�
��

�
�
��

@
@

@I

σ1 σ2

τ1 τ2

Lemma 3.2. For any S1-construction C1 ⊆ Alg(Σ1) and S2-construction C2 ⊆
Alg(Σ2), their amalgamation C1⊕C2 = {A1 ⊕A2 | A1 ∈ C1, A2 ∈ C2, A1 σ1 = A2 σ2}
⊆ Alg(Σ′) is an S ′-construction.
Proof Let x′ ∈ Symb(Σ′) be defined in S ′; suppose that x′ = τ1(x1) where

x1 ∈ Symb(Σ1) is defined in S1 (the other option, x′ = τ2(x2) where

x2 ∈ Symb(Σ2) is defined in S2, is symmetric). Consider A′, B′ ∈ C1 ⊕ C2, where
A′ = A1 ⊕ A2 and B′ = B1 ⊕ B2, for A1, B1 ∈ C1, A2, B2 ∈ C2, such that

A1 σ1
= A2 σ2

and B1 σ1
= B2 σ2

. Suppose A′
Sig(Sx′⇓) = B′

Sig(Sx′⇓). Then, by

Lemma 2.2, A1 Sig(Sx1
1 ⇓) = B1 Sig(Sx1

1 ⇓), and so, since C1 is an S1-construction,
A1 Sig(Sx1

1 ↓) = B1 Sig(Sx1
1 ↓). Hence, by Lemma 2.2 again, A′

Sig(Sx′↓) = B′
Sig(Sx′↓).

�
Corollary 3.3. Constructions admit a weak amalgamation property: given

an S1-construction C1 ⊆ Alg(Σ1) and an S2-construction C2 ⊆ Alg(Σ2) such that

C1 σ1 = C2 σ2 , their amalgamation C′ = C1 ⊕ C2 is an S ′-construction such that

C′ τ1 = C1 and C′ τ2 = C2.
Proof C′ is an S ′-construction by Lemma 3.2. Clearly, C′ τ1 ⊆ C1. Moreover, since

C1 σ1 = C2 σ2 , for each A1 ∈ C1 there is A2 ∈ C2 such that A1 σ1 = A2 σ2 , and so



124 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

C′ τ1 = C1. Similarly, C′ τ2 = C2. �
In general, C′ = C1 ⊕ C2 need not be a unique S ′-construction such that C′ τ1 = C1
and C′ τ2 = C2. There may exist “weaker” S ′-constructions C′′ ⊂ C′ with C′′ τ1 = C1
and C′′ τ2 = C2 — this may be the case when C′′ allows only some combinations of

the interpretation of assumed symbols in S1 and S2, but some such combinations

are missed. This lack of uniqueness is not a major problem in our view, since the

amalgamation operation on constructions offers a natural canonical way to combine

constructions over pushouts of construction signatures.

Given a construction signature S = ⟨Σ, D,≺⟩, we say that an S-construction
C ⊆ Alg(Σ) is well-grouped if any interpretations of symbols it permits may be

arbitrarily combined with each other, that is, for any set X ⊆ Symb(Σ) of symbols,

for all Σ-algebras A ∈ Alg(Σ), if A Sig(Sx↓) ∈ C Sig(Sx↓) for all x ∈ X then also

A Sig(SX↓) ∈ C Sig(SX↓). Any well-grouped construction is non-trivial (to see this,

consider X = ∅). Also, since in any construction the interpretation of the dependency

structure below a defined symbol unambiguously determines the interpretation of this

symbol, the condition may be limited to require arbitrary combinations of independent

assumed symbols only.

Example 3.4 (Ordinary signatures and algebras). Recall Example 2.3.

Given a complete construction signature S, each non-trivial S-construction consists

of a single Sig(S)-algebra. Clearly, amalgamation of such constructions corresponds

to the amalgamation of the algebras, as expected, and similarly for reducts

w.r.t. construction signature morphisms. �
Example 3.5 (Parameterised modules). Recall Example 2.4. Given a

“type” ι : ΣP ↪→ ΣR, a parameterised module over ι is a (perhaps partial) function

F : Alg(ΣP ) → Alg(ΣR) that is persistent, i.e., for each A ∈ Alg(ΣP ) such that

F (A) ∈ Alg(ΣR) is defined, we have F (A) ΣP
= A. We may identify each such

function F with its range CF = {F (A) | A ∈ Alg(ΣP )}. One may check now that

CF is a construction over the construction signature Sι that captures ι : ΣP ↪→ ΣR

as in Example 2.4. Moreover, any Sι-construction determines a persistent (possibly

partial) function from Alg(ΣP ) to Alg(ΣR): given an Sι-construction C, we define

FC : Alg(ΣP ) → Alg(ΣR) by FC = {AP 7→ AR | AR ∈ C, AP = AR ΣP
}. This is

a well-defined function, since all symbols in ΣR and not in ΣP are defined in Sι,
therefore each ΣP -algebra in C ΣP has a unique expansion to a ΣR-algebra in C. �

Example 3.6 (Complex dependencies). Recall Example 2.5 and the

construction signature S0 defined there. An S0-construction may be built as follows.

We start with an arbitrary collection of interpretations for Nat , zero : Nat and

succ : Nat . Then, each such interpretation is uniquely extended by a value for

a : Nat . Once this is given, interpretations for b : Nat and c : Nat may be given freely

again — but the choice of their values must not influence the value of a : Nat .

Finally, for each such interpretation of Nat , zero : Nat , succ : Nat , (a : Nat), b : Nat

and c : Nat , unique values for d : Nat and e : Nat may be given.

Consider the following Σ0-algebras that interpret Nat , zero : Nat and succ : Nat

in the standard way, and:

A1 = {a = 1, b = 2, c = 3, d = 3, e = 4}
A2 = {a = 2, b = 3, c = 4, d = 4, e = 5}
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A3 = {a = 1, b = 3, c = 4, d = 4, e = 5}
A4 = {a = 1, b = 3, c = 3, d = 4, e = 4}
A5 = {a = 1, b = 2, c = 4, d = 3, e = 5}

Now, {A1, A2, A3, A4} is not an S0-construction, since A1 and A2 define a differently

even though they interpret the dependency structure below a in the same way. On the

other hand, C = {A1, A3, A4} is an S0-construction: different values of d and e result

from different interpretations of the dependency structure below d and e. However,

C is not well-grouped: b and c are independent, but their values are not combined

arbitrarily here, the combination b = 2 and c = 4 is missing. C0 = {A1, A3, A4, A5} is
a well-grouped S0-construction. �

4 Construction Specifications

We will not try to present here any specific framework for algebraic

specifications — see Ref. [18] for an overview, a presentation of such a framework

and historical remarks. We assume as given a class Spec of specifications with a

semantics that for each specification SP ∈ Spec yields its signature

Sig [SP ] ∈ |AlgSig| and a class of models Mod [SP ] ⊆ Alg(Sig [SP ]). A specification

SP is consistent if Mod [SP ] ̸= ∅. Specifications SP with Sig [SP ] = Σ will be

referred to as Σ-specifications. Typically, specifications can be given simply as

theories of some standard logic (like equational logic, or first-order logic with

equality), perhaps with various forms of higher-order constraints added, as well as

built from such basic specifications by means of predefined specification-building

operations.

We assume that the class of specifications is closed under the following

specification-building operations from Ref. [16]; see Ref. [18] for extensive

explanation and examples.

union: Given two Σ-specifications SP1, SP2, we also have a specification SP1 ∪ SP2

with Sig [SP1 ∪ SP2] = Σ, Mod [SP1 ∪ SP2] = Mod [SP1] ∩Mod [SP2].

translation: Given a Σ-specification SP and a signature morphism σ : Sig [SP ] → Σ′

we also have a specification σ(SP) with Sig [σ(SP)] = Σ′, Mod [σ(SP)] = {A′ ∈
Alg(Σ′) | A′

σ ∈ Mod [SP ]}.

hiding: Given a Σ-specification SP and a signature morphism σ : Σ′ → Sig [SP ] we

also have a specification SP σ with Sig [SP σ] = Σ′, Mod [SP σ] = {A σ | A ∈
Mod [SP ]}.

We use specifications of essentially this form to specify the constructions

introduced in Sect. 3: a construction specification SP = ⟨S,SP⟩ consists of a

construction signature S and a Sig(S)-specification SP . We write CSig [SP] for S,
and somewhat ambiguously, Sig [SP] for Sig(S) and Mod [SP] for Mod [SP ]. The

definition of the construction models of SP is somewhat more complex.

Given a construction specification SP = ⟨S,SP⟩, where S = ⟨Σ, D,≺⟩, we write

CMod [SP] ⊆ Con(CSig [SP]) for the class of its construction models, where an S-
construction C ⊆ Alg(Σ) is a model of SP if the following conditions hold:
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(C is correct for SP): for all x ∈ D and A ∈ C, if A Sig(Sx⇓) ∈ Mod [SP Sig(Sx⇓)] then

A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)].

(C is complete for SP): for all x ∈ Symb(Σ) \D and A ∈ Mod [SP ], if A Sig(Sx⇓) ∈
C Sig(Sx⇓) then A Sig(Sx↓) ∈ C Sig(Sx↓).

(grouping): C is well-grouped.

(C-dependency-wise): for all X ⊆ Symb(Σ) and A ∈ C, if A Sig(Sx↓) ∈
Mod [SP Sig(Sx↓)] for each x ∈ X then A Sig(SX↓) ∈ Mod [SP Sig(SX↓)].

Somewhat informally, the specification SP is used here to determine both the scope

of the construction (the requirements on the assumed symbols under which the

construction must work) as well as its results (the requirements on the defined

symbols which the construction must ensure). C is correct for SP if for each

interpretation of the dependency structure below a defined symbol x that is allowed

by SP , it interprets the symbol x in a way that satisfies the requirements imposed

by SP . C is complete for SP if any interpretation of assumed symbols consistent

with SP is allowed. The requirement that C is well-grouped was discussed in Sect. 3:

no combination of allowed interpretations of assumed symbols should be excluded.

Finally, the “C-dependency-wise” condition states that as far as algebras within the

construction are concerned, the requirements imposed by SP must reflect the

dependency structure: SP must not directly relate symbols that are mutually

independent (although some relationship between such symbols may follow via

common symbols in their dependency structures). However, this does not always

concern sets of defined symbols, as in the models of the specification their

interpretation is uniquely determined by the construction. This remark

notwithstanding, in a way, the C-dependency-wise requirement may be seen as

constraining specifications rather than constructions.

A construction specification SP = ⟨S,SP⟩, where S = ⟨Σ, D,≺⟩, is dependency-
wise if for all X ⊆ Symb(Σ) and A ∈ Alg(Σ), if A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)] for

each x ∈ X then A Sig(SX↓) ∈ Mod [SP Sig(SX↓)].

Lemma 4.1. For any dependency-wise construction specification

SP = ⟨S,SP⟩, any well-grouped S-construction C ⊆ Alg(Sig(S)) that is correct and
complete for SP is its construction model: C ∈ CMod [SP].
Proof If SP is dependency-wise then the C-dependency-wise condition holds as well.

�
Theorem 4.2. Every dependency-wise construction specification has a

construction model.

Proof Let SP = ⟨S,SP⟩, where S = ⟨Σ, D,≺⟩, be dependency-wise.

First note that SP is consistent: take any algebra A ∈ Alg(Σ), then since SP
is dependency-wise, A Σ∅ ∈ Mod [SP Σ∅ ], where Σ∅ is the empty algebraic signature,

which implies that Mod [SP ] ̸= ∅.
Then, let n be the number of symbols in Σ and x1, . . . , xn be an enumeration

of Symb(Σ) consistent with ≺, that is Symb(Σ) = {x1, . . . , xn} and if xi ≺ xj

then i < j. Then taking X0 = ∅ and Xi = Xi−1 ∪ {xi}, Symb(Sxi⇓) ⊆ Xi−1 for

i = 1, . . . , n, and SXi↓ is a (proper) subsignature of SXk↓ for 0 6 i < k 6 n.



Grzegorz Marczyński, et al.: Algebraic constructions: a simple framework for ... 127

Let C0 = Mod [SP ] and then, for i = 1, . . . , n, let Ci be defined as follows:

– if xi is assumed, Ci = Ci−1;

– if xi is defined, let Ci be a maximal subset of Ci−1 such that for all A,A′ ∈ Ci,
if A Sig(Sxi⇓) = A′

Sig(Sxi⇓) then A Sig(Sxi↓) = A′
Sig(Sxi↓). Such a Ci exists by

the Zorn-Kuratowski Lemma (since given any chain of subsets of Ci−1 that

satisfy the requirement, its union satisfies the requirement as well). Then we

have a unique persistent (along the inclusion Sxi⇓ ↪→ Sxi↓) function

Fi : Ci−1 Sig(Sxi⇓) → Ci Sig(Sxi↓), which is total by maximality of Ci. Moreover

Ci = {A ∈ Ci−1 | A Sig(Sxi↓) = Fi(A Sig(Sxi⇓))}. (In fact, choosing Ci is the

same as choosing a total persistent function Fi : Ci−1 Sig(Sxi⇓) → Ci−1 Sig(Sxi↓)
and then defining Ci in this way.)

It follows by an easy induction that Ci = {A ∈ Mod [SP ] | A Sig(SXi↓) ∈ Ci} and that

Ck Sig(SXi↓) = Ci Sig(SXi↓) for 0 6 i < k 6 n.

We show that Cn is a construction model of SP.
Clearly, Cn is a construction, and it is correct for SP. By Lemma 4.1, we have

to show that it is complete for SP and is well-grouped.

First, we show by induction on i = 0, . . . , n that Ci is complete for SP. This is

obvious for i = 0. Assume Ci−1 is complete for SP, 0 < i 6 n. If xi is assumed, then

Ci = Ci−1 is complete for SP as well. Thus, the interesting case is when xi is defined.

Let then x = xk ∈ Symb(Σ) \D be an assumed symbol, and A ∈ Mod [SP ] be such

that A Sig(Sx⇓) ∈ Ci Sig(Sx⇓). We have to show that A Sig(Sx↓) ∈ Ci Sig(Sx↓).

Since Ci ⊆ Ci−1, we have A Sig(Sx⇓) ∈ Ci−1 Sig(Sx⇓), and so by the inductive

assumption, A Sig(Sx↓) ∈ Ci−1 Sig(Sx↓).

If k < i then Sx↓ is a subsignature of SXi−1↓. Then, since Ci Sig(SXi−1↓) =

Ci−1 Sig(SXi−1↓), we get Ci Sig(Sx↓) = (Ci SXi−1↓) Sig(Sx↓) = (Ci−1 SXi−1↓) Sig(Sx↓) =

Ci−1 Sig(Sx↓). Hence A Sig(Sx↓) ∈ Ci Sig(Sx↓).

If i < k and xi ≺ x then Sxi↓ is a subsignature of Sx⇓. Then since A Sig(Sx⇓) ∈
Ci Sig(Sx⇓), we have A Sig(Sxi↓) ∈ Ci Sig(Sxi↓), which together with A ∈ Mod [SP ] yields

A ∈ Ci, and A Sig(Sx↓) ∈ Ci Sig(Sx↓).

Finally, consider i < k and xi ̸≺ x (so that xi and x are independent). Let

Y = Symb(Sig(Sx⇓)) ∪ {xi}. Then the following is a pushout in ConSig, with all

four morphisms being inclusions:

Sx⇓

Sx↓ SY↓

SY ∪{x}↓

@
@

@I

�
�
��

�
�
��

@
@

@I

Since A Sig(Sx⇓) ∈ Ci Sig(Sx⇓), there is B ∈ Ci such that B Sig(Sx⇓) = A Sig(Sx⇓). Let

B0 ∈ Alg(Sig(SY ∪{x}↓)) be the amalgamation of A Sig(Sx↓) and B Sig(SY↓) (over the

algebraic signature pushout underlying the above construction signature pushout).

Let B′ be an expansion of B0 to a Sig(S)-algebra, that is, B′ ∈ Alg(Sig(S)) and
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B′
Sig(SY ∪{x}↓) = B0.

3 Now, B′
Sig(Sx↓) = A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)] and

B′
Sig(SY↓) = B Sig(SY↓) ∈ Ci Sig(SY↓) ⊆ Mod [SP Sig(SY↓)]. Hence, since SP is

dependency-wise, B0 = B′
Sig(SY ∪{x}↓) ∈ Mod [SP Sig(SY ∪{x}↓)]. Therefore, there is

A′′ ∈ Mod [SP ] such that A′′
Sig(SY ∪{x}↓) = B0. Since xi ∈ Y , we also have

A′′
Sig(Sxi↓) = B0 Sig(Sxi↓) = B Sig(Sxi↓) ∈ Ci Sig(Sxi↓). Consequently, A′′ ∈ Ci, and

A Sig(Sx↓) = B0 Sig(Sx↓) = A′′
Sig(Sx↓) ∈ Ci Sig(Sx↓), which proves that Ci is complete

for SP, and so in particular Cn is complete for SP.
To show that Cn is well-grouped, consider an algebra A ∈ Alg(Σ) and a set

X ⊆ Symb(Σ) such that for each x ∈ X, A Sig(Sx↓) ∈ Cn Sig(Sx↓). Since Cn ⊆
Mod [SP ] and SP is dependency-wise, it follows that A Sig(SX↓) ∈ Mod [SP Sig(SX↓)].

Let A′ ∈ Mod [SP ] be such that A′
Sig(SX↓) = A Sig(SX↓). We prove that A Sig(SX↓) ∈

Ci Sig(SX↓) by induction, i = 0, . . . , n. Clearly, by definition of C0, A Sig(SX↓) =

A′
Sig(SX↓) ∈ C0 Sig(SX↓).

Suppose now A Sig(SX↓) ∈ Ci−1 Sig(SX↓), for some i = 1, . . . , n. If xi is assumed

then A Sig(SX↓) ∈ Ci Sig(SX↓) since Ci = Ci−1. Otherwise xi is defined.

If xi ≺ x for some x ∈ X then A′
Sig(Sxi↓) = (A Sig(Sx↓)) Sig(Sxi↓) ∈ Ci Sig(Sxi↓),

since A Sig(Sx↓) ∈ Cn Sig(Sx↓) and Cn ⊆ Ci. Consequently, A′ ∈ Ci, and A Sig(SX↓) ∈
Ci Sig(SX↓).

Otherwise xi ̸∈ Symb(Sig(SX↓)). Put Y = Symb(Sig(SX↓)∪
Symb(Sig(Sxi⇓)). The following is a pushout in ConSig, with all four morphisms

being inclusions:

Sxi⇓

SY↓ Sxi↓

SY ∪{xi}↓

@
@

@I

�
�
��

�
�
��

@
@

@I

Since A Sig(SX↓) ∈ Ci−1 Sig(SX↓), there is B ∈ Ci−1 such that B Sig(SX↓) =

A Sig(SX↓). By the definition of Ci, there is B′ ∈ Ci such that B′
Sxi⇓ = B Sxi⇓. Let

B0 ∈ Alg(Sig(SY ∪{xi}↓)) be the amalgamation of B Sig(SY↓) and B′
Sig(Sxi↓) (over

the algebraic signature pushout underlying the above construction signature

pushout). Let B′′ be an expansion of B0 to a Sig(S)-algebra, that is, B′′ ∈
Alg(Sig(S)) and B′′

Sig(SY ∪{xi}↓) = B0. Now, B′′
Sig(Sxi↓) = B′

Sig(Sxi↓) ∈
Ci Sig(Sxi↓) ⊆ Mod [SP Sig(Sxi↓)] and B′′

Sig(SY↓) = B Sig(SY↓) ∈ Ci−1 Sig(SY↓) ⊆
Mod [SP Sig(SY↓)]. Hence, since SP is dependency-wise, B0 = B′′

Sig(SY ∪{xi}↓) ∈
Mod [SP Sig(SY ∪{xi}↓)]. Therefore, there is A′′ ∈ Mod [SP ] such that A′′

Sig(SY ∪{xi}↓)
= B0. Then A′′

Sig(Sxi↓) = B0 Sig(Sxi↓) = B′
Sig(Sxi↓) ∈ Ci Sig(Sxi↓). Consequently,

A′′ ∈ Ci, and A Sig(SX↓) = B Sig(SX↓) = B0 Sig(SX↓) = A′′
Sig(SX↓) ∈ Ci Sig(SX↓).

This proves that Cn is well-grouped, and completes the proof of the theorem. �
Perhaps surprisingly, even if C is a construction model of a construction

specification SP = ⟨S,SP⟩, it does not follow that all algebras in C are models of SP

— we call C a clean construction model of SP if C ⊆ Mod [SP ]. In general though,

3If Σ is an algebraic subsignature of Σ′ than any Σ-algebra (with non-empty carriers, as we assume

here) has an expansion to a Σ′-algebra.
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the idea is that we do not require the construction to “work as specified” when the

assumed symbols are interpreted so that they do not satisfy the specification. We

may want to “clean up” any construction to cover only the models permitted by the

algebraic specification SP , which we write as cleanSP(C) = C ∩Mod [SP ]. Cleaning

a construction model of a construction specification yields a construction model of

this construction specification as well, although this is not a self-evident property:

Lemma 4.3. Given a construction specification SP = ⟨S,SP⟩ and a

construction model C ∈ CMod [SP], cleanSP(C) is a construction model of SP as

well, cleanSP(C) ∈ CMod [SP].
Proof Clearly, since cleanSP(C) ⊆ C, if C is a construction then so is cleanSP(C).
Moreover, if C if correct for SP then so is cleanSP(C), and the C-dependency-wise
property implies the cleanSP(C)-dependency-wise property. So, we have to prove

that cleanSP(C) is complete for SP and that cleanSP(C) is well-grouped.
Let S = ⟨Σ, D,≺⟩. As in the proof of Thm. 4.2, let n be the number of symbols

in Sig(S), x1, . . . , xn be an enumeration of Symb(Σ) consistent with ≺, X0 = ∅ and
Xi = Xi−1 ∪ {xi}.

First, by induction on i = n, . . . , 0 (reverse order!) we prove that

cleanSP(C) Sig(SXi↓) ⊇ C Sig(SXi↓) ∩ Mod [SP Sig(SXi↓)]. Since the opposite

inclusion is obvious, we will in fact prove the equality of the two algebra classes in

this way.

Since Xn = Symb(Σ), there is nothing to prove for i = n. Suppose now for some

i = n − 1, . . . , 0 that cleanSP(C) Sig(SXi+1↓) ⊇ C Sig(SXi+1↓) ∩ Mod [SP Sig(SXi+1↓)].

Consider a Sig(SXi↓)-algebra Ai ∈ C Sig(SXi↓) ∩ Mod [SP ] Sig(SXi↓). We have then

A′ ∈ C and A′′ ∈ Mod [SP ] such that A′
Sig(SXi↓) = Ai = A′′

Sig(SXi↓).

If xi+1 is defined, put Bi+1 = A′
Sig(SXi+1↓) ∈ C Sig(SXi+1↓). Then also

Bi+1 ∈ Mod [SP Sig(SXi+1↓)], since C is correct for SP. If xi+1 is assumed, put

Bi+1 = A′′
Sig(SXi+1↓) ∈ Mod [SP Sig(SXi+1↓)]. Then also Bi+1 ∈ C Sig(SXi+1↓), since

C is complete for SP. In either case, Bi+1 ∈ C Sig(SXi+1↓) ∩Mod [SP Sig(SXi+1↓)], and

so Bi+1 ∈ cleanSP(C) Sig(SXi+1↓) by the inductive hypothesis. Hence

Ai = Bi+1 Sig(SXi↓) ∈ cleanSP(C) Sig(SXi↓).

This proves cleanSP(C) Sig(SXi↓) = C Sig(SXi↓) ∩ Mod [SP Sig(SXi↓)], for

i = 0, . . . , n. In fact, it follows immediately that for any set X ⊆ Symb(Σ) and

Σ-algebra A, if A Sig(SX↓) ∈ C Sig(SX↓) and A Sig(SX↓) ∈ Mod [SP Sig(SX↓)] then

A Sig(SX↓) ∈ cleanSP(C) Sig(SX↓) (just choose the enumeration x1, . . . , xn used

above so that Symb(Sig(SX↓)) = Xi for some i).

Now, back to the proof of the lemma: to see that cleanSP(C) is complete for

SP, consider x ∈ Symb(Σ) \ D and A ∈ Mod [SP ] such that A Sig(Sx⇓) ∈
cleanSP(C) Sig(Sx⇓). Clearly, A Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)], and since C is complete

for SP, A Sig(Sx↓) ∈ C Sig(Sx↓). Consequently, by the above fact, A Sig(Sx↓) ∈
cleanSP(C) Sig(Sx↓).

To see that cleanSP(C) is well-grouped, consider a set X ⊆ Symb(Σ) and a

Σ-algebra A such that A Sig(Sx↓) ∈ cleanSP(C) Sig(Sx↓) for all x ∈ X. Since C is

well-grouped, A Sig(SX↓) ∈ C Sig(SX↓). Take any Σ-algebra A′ ∈ C such that

A′
Sig(SX↓) = A Sig(SX↓). Then for all x ∈ X, A′

Sig(Sx↓) ∈ Mod [SP Sig(Sx↓)], and so

by the C-dependency-wise property, A Sig(SX↓) = A′
Sig(SX↓) ∈ Mod [SP Sig(SX↓)].

Hence A Sig(SX↓) ∈ cleanSP(C) Sig(SX↓). �
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Example 4.4 (Ordinary signatures and algebras). Recall Examples 2.3

and 3.4. Consider a construction specification SP = ⟨S,SP⟩, where S is a complete

construction signature and SP is a Sig(S)-specification. Then any algebra

A ∈ Mod [SP ] yields a clean construction model {A} ∈ CMod [SP]; all clean

construction models of SP are of this form.

Note that in general SP need not be dependency-wise. However, the

{A}-dependency-wise property trivially holds. �
Example 4.5 (Parameterised modules). Recall Examples 2.4 and 3.5.

A specification of parameterised modules over a “type” ι : ΣP ↪→ ΣR is typically

given by a parameter specification SPP with Sig [SPP ] = ΣP and result specification

SPR with Sig [SPR] = ΣR, such that Mod [SPR ΣP
] ⊆ Mod [SPP ] (or in other words,

ι : SPP → SPR is a specification morphism, see Sect. 5). A parameterised module,

which is a persistent partial function F : Alg(ΣP )→ Alg(ΣR), satisfies a specification

so given if for all A ∈ Mod [SPP ], F (A) is defined and F (A) ∈ Mod [SPR]. Clearly,

such a correct parameterised module exists only if SPR is a conservative extension of

SPP , i.e., each model in Mod [SPP ] may be expanded to a model in Mod [SPP ], or in

other words: Mod [SPR ΣP ] = Mod [SPP ] — we assume below that this is the case.

Consider a construction specification SPι = ⟨Sι,SPR⟩, with SPP = SPR ΣP
,

where Sι is the construction signature determined by ι as defined in Example 2.4.

Let C ⊆ Alg(ΣR) be a construction model of SPι, and let FC = {AP 7→ AR |
AR ∈ C, AP = AR ΣP } be the parameterised module it defines, as in Example 3.5.

Then, since C is complete for SPι, and all the symbols in ΣP are assumed in Sι,
C ΣP

⊇ Mod [SPP ], so FC is defined on all algebras in Mod [SPP ]. Moreover, since all

symbols in ΣR that are not in ΣP are defined in Sι, each AP ∈ Mod [SPP ] has a unique

expansion to a ΣR-algebra in C, and this expansion is a model in Mod [SPR]. Hence,

FC is indeed correct w.r.t. parameter specification SPP and result specification SPR.

Conversely, consider a persistent partial function F : Alg(ΣP ) → Alg(ΣR) that

is correct w.r.t. parameter specification SPP and result specification SPR, and define

its corresponding Sι-construction CF = {F (A) | A ∈ Alg(ΣP )}, as in Example 3.5.

Unfortunately, in general CF need not be a construction model of SPι. A minor

problem is that CF need not be well-grouped: we know nothing about how F works

on algebras outside Mod [SPP ], and so its domain need not be closed under arbitrary

combination of interpretations of symbols in the parameter signature allowed in some

algebras in its domain. No harm is done though by cleaning CF to leave models

of SPR only, thus removing applications of F to algebras not in Mod [SPP ] — or

alternatively, by adding any ΣR-expansion as a result for any ΣP -algebra needed to

make the domain of F (and hence also CF ) well-grouped.
A more serious problem is that the CF -dependency-wise condition may not hold

for sets of symbols in the parameter signature. A remedy is to add to Sι enough

dependencies between the symbols in ΣP to make SPP dependency-wise. This can

always be achieved, for instance by imposing any linear strict order on the symbols

of ΣP . Once Sι is so redefined, call it S ′ι, C′F = {F (A) | A ∈ Mod [SPP ]} is a (clean)

construction model of the construction specification SP ′
ι = ⟨S ′ι,SPR⟩. �

Example 4.6 (Complex dependencies). Recall Example 2.5, the

construction signature S0 defined there, and Example 3.6, with sample Σ0-algebras

A1, . . . , A5, and the S0-construction C0 = {A1, A3, A4, A5}.
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Suppose we have a Σ0-specification SPN with all models interpreting Nat ,

zero : Nat and succ : Nat in the standard way, and putting no constraints on the

other constants in the signature. Consider extensions of SPN by axioms that

constrain the other constants (such extensions, originating from Clear[3], may be

defined easily as the union of SPN with basic specifications listing the corresponding

axioms, see Casl[4] or Ref. [18]).

SP1 = SPN then a = zero

SP2 = SPN then b = c

SP3 = SPN then d = succ(b) ∧ e = succ(c)

SP4 = SPN then (b = succ(a) ∨ b = succ(succ(a))) ∧
(c = succ(succ(a)) ∨ c = succ(succ(succ(a)))) ∧ d = succ(b) ∧ e = succ(c)

SP5 = SPN then b = succ(succ(a)) ∧ c = succ(succ(a)) ∧ d = e

SP6 = SPN then (b = succ(a) ∨ b = succ(succ(a))) ∧ c = succ(succ(a)) ∧ d = e

Put SPi = ⟨S0,SP i⟩, i = 1, . . . , 6.

SP1 is a dependency-wise construction specification, but clearly, C0 is not its

construction model (since it defines a inconsistently with SP1). SP2 is not

dependency-wise (since for each n there is a model of SP2 with b = n and another

one with c ̸= n, but no model of SP2 with both b = n and c ̸= n) and in fact SP2

has no construction model. SP3 is a dependency-wise specification, but C0 is not its

construction model (since C0 is not complete for SP3). SP4 is a dependency-wise

specification, and C0 is among its (clean) construction models. SP5 is not a

dependency-wise specification (since for each n there is a model of SP5 with d = n

and another one with e ̸= n, but no model of SP5 has both d = n and e ̸= n);

nevertheless C0 is its construction model (it is not clean though). SP6 is another

construction specification which is not dependency-wise but it has some

construction models; however, C0 is not among them. �

5 Putting Construction Specifications Together

In the usual algebraic specification framework, one defines a category Spec of

specifications, where a specification morphism σ : SP → SP ′ is a signature morphism

σ : Sig [SP ] → Sig [SP ′] such that for all models A′ ∈ Mod [SP ′], A′
σ ∈ Mod [SP ],

see Refs. [16,18]. Then the obvious projection functor from Spec to AlgSig lifts

colimits: given a (finite) diagram of specifications, to build its colimit in Spec one

first constructs a colimit of its underlying signature diagram in AlgSig, and then

the colimit specification in Spec is built over the colimit signature as the union of

translations of the specifications in the diagram along the corresponding signature

morphisms of the colimiting cocone in AlgSig (this has its roots in Refs. [2,7], see

Refs. [16,18]). Colimits in the category of specifications, constructed in this way, are

often viewed as a basic way to combine specifications, see Refs. [2,3].

One may want to take a similar approach here, for putting together construction

specifications. However, problems are encountered already with the basic definition

of a morphism between construction specifications. To give a hint of the problems,

consider two construction specifications SP = ⟨S,SP⟩ and SP ′ = ⟨S ′,SP ′⟩, and a
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construction signature morphism σ : S → S ′ that is also a specification morphism

σ : SP → SP ′. Let C′ ∈ CMod [SP ′] be a construction model of SP ′. Then in general

C′ σ, which is an S-construction by Lemma 3.1, is not a construction model of SP.
This can be seen for instance when the two signatures coincide, σ is the identity, and

Mod [SP ] ⊇ Mod [SP ′]. The key problem is that weaker requirements in SP concern

not only defined, but also assumed symbols in the construction signature, which makes

some requirements concerning construction models of construction specifications (e.g.,

the completeness condition) more difficult to meet. See Sect. 6 for some further

remarks on this topic.

Instead, we try to mimic this technique directly and provide compositionality

results to justify its usefulness. As in Sect. 3, consider a pushout of construction

signatures in ConSig and its underlying pushout in AlgSig of the following form:

S

S1 S2

S ′

@
@

@I

�
�
��

�
�
��

@
@

@I

σ1 σ2

τ1 τ2

Σ

Σ1 Σ2

Σ′

@
@

@I

�
�
��

�
�
��

@
@

@I

σ1 σ2

τ1 τ2

Now, given construction specifications SP1 = ⟨S1,SP1⟩ and SP2 = ⟨S2,SP2⟩, where
SP1 and SP2 are specifications with Sig [SP1] = Σ1 and Sig [SP2] = Σ2, we may

attempt to put them together to form an S ′-construction specification of the form

⟨S ′, τ1(SP1) ∪ τ2(SP2)⟩. However, not all such combinations make methodological

sense, and certainly not all of them lead to consistent specifications, even if both

SP1 and SP2 have construction models. First, no shared symbol should be defined

simultaneously in S1 and S2. Second, requirements concerning shared symbols in SP1

and SP2 must be compatible.

A span S1
σ1←− S σ2−→ S2 is a fitting between S1 and S2 if for each symbol

x ∈ Symb(Σ), if σ1(x) is defined in S1 then σ2(x) is assumed in S2, and vice versa,

if σ2(x) is defined in S2 then σ1(x) is assumed in S1. It follows that the construction

signature S is empty (that is, all its symbols are assumed).4

Given construction specifications SP1 = ⟨S1,SP1⟩ and SP2 = ⟨S2,SP2⟩ and a

fitting ft = S1
σ1←− S σ2−→ S2 between their signatures, their sum SP1 ⊕ft SP2 is a

construction specification defined as SP1 ⊕ft SP2 = ⟨S ′, τ1(SP1) ∪ τ2(SP2)⟩, where
τ1 : S1 → S ′ and τ2 : S2 → S ′ form a pushout of σ1 and σ2 as above (the subscript ft

will be omitted when the fitting and hence the pushout are clear).

Still, in general the sum SP1 ⊕ft SP2 may be inconsistent, even if each of SP1

and SP2 is consistent on its own, since they may impose incompatible requirements

on the shared symbols.

We say that construction specifications SP1 = ⟨S1,SP1⟩ and SP2 = ⟨S2,SP2⟩
are compatible w.r.t. the fitting ft = S1

σ1←− S σ2−→ S2 if:

– for all setsX ⊆ Symb(Σ) of mutually independent symbols in S such that σ1(x)

is assumed in S1 for all x ∈ X, and for all A2 ∈ Mod [SP2], if (A2 σ2) Sig(SX⇓) ∈

4This assumption may be dropped at the expense of complications in the exact formulation and

proof of the compatibility result.
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Mod [SP1 σ1 ] Sig(SX⇓) then (A2 σ2) Sig(SX↓) ∈ Mod [SP1 σ1 ] Sig(SX↓); and

– (vice versa) for all sets X ⊆ Symb(Σ) of mutually independent symbols in S
such that σ2(x) is assumed in S2 for all x ∈ X, and for all A1 ∈ Mod [SP1], if

(A1 σ1) Sig(SX⇓) ∈ Mod [SP2 σ2 ] Sig(SX⇓) then (A1 σ1) Sig(SX↓) ∈
Mod [SP2 σ2 ] Sig(SX↓).

Informally the above requirements state that neither of the specifications excludes an

interpretation of shared symbols that is permitted by the other specification.

Theorem 5.1. Consider construction specifications SP1 = ⟨S1,SP1⟩ and
SP2 = ⟨S2,SP2⟩ that are compatible w.r.t. a fitting ft = S1

σ1←− S σ2−→ S2. Let

C1 ∈ CMod [SP1] and C2 ∈ CMod [SP2] be their clean models. Then C1⊕C2 is a clean

model of SP1 ⊕ SP2.

Proof Let τ1 : S1 → S ′ and τ2 : S2 → S ′ form a pushout of σ1 and σ2 as above.

Recall that SP1⊕SP2 = ⟨S ′,SP ′⟩, where SP ′ = τ1(SP1)∪τ2(SP2). Put C′ = C1⊕C2,
Σ′ = Sig(S ′), Σ1 = Sig(S1) and Σ2 = Sig(S2).
C′ is an S ′-construction by Lemma 3.2. By definition of C1⊕C2, for each A′ ∈ C′,

A′
τ1 ∈ C1 and A′

τ2 ∈ C2. Hence, since C1 and C2 are clean construction models of

SP1 and SP2, respectively, C′ ⊆ Mod [SP ′], and so if C′ is a construction model of

SP1 ⊕ SP2 then it is its clean construction model.

We have to show that C′ is indeed a construction model of SP1 ⊕ SP2.

To show that C′ is correct for SP1 ⊕ SP2, consider x ∈ Symb(Σ′) defined in

S ′ and a Σ′-algebra A′ ∈ C′ such that A′
Sig(Sx⇓) ∈ Mod [SP ′

Sig(Sx⇓)]. In fact, since

C′ ⊆ Mod [SP ′], the latter requirement follows from A′ ∈ C′; but so does the required

conclusion that A′
Sig(Sx↓) ∈ Mod [SP ′

Sig(Sx↓)].

A similar argument as above for the correctness condition, using the fact that

C′ ⊆ Mod [SP ′], easily yields the C′-dependency-wise condition.

To show that C′ is complete for SP1 ⊕ SP2 and is well-grouped, we will use an

auxiliary lemma:

Lemma 5.2. Under the notation introduced above, consider any

X ⊆ Symb(Σ′) and let X1 = {x1 ∈ Symb(Σ1) | τ1(x1) ∈ X} and X2 = {x2 ∈
Symb(Σ2) | τ2(x2) ∈ X}. Then for all Σ′-algebras A′ ∈ Alg(Σ′), if

(A′
τ1) Sig(SX1

1 ↓) ∈ C1 Sig(SX1
1 ↓) and (A′

τ2) Sig(SX2
2 ↓) ∈ C2 Sig(SX2

2 ↓) then

A′
Sig((S′)X↓) ∈ C′ Sig((S′)X↓).

Proof Given a Σ′-algebra A′ satisfying the assumptions in the statement of the

lemma, we need an algebra B′ ∈ C′ such that B′
Sig((S′)X↓) = A′

Sig((S′)X↓). Since

X = τ1(X1) ∪ τ2(X2), by construction of C′ it is enough to show that there exist

B1 ∈ C1 and B2 ∈ C2 such that B1 σ1 = B2 σ2 and B1 Sig(SX1
1 ↓) = (A′

τ1) Sig(SX1
1 ↓)

and B2 Sig(SX2
2 ↓) = (A′

τ2) Sig(SX2
2 ↓); then B′ = B1 ⊕ B2 ∈ C′ satisfies the above

requirement.

Let Y = {x ∈ Symb(Σ) | σ1(x) ∈ X1}. Then also Y = {x ∈ Symb(Σ) | σ2(x) ∈
X2} = {x ∈ Symb(Σ) | τ1(σ1(x)) = τ2(σ2(x)) ∈ X}. Let then, similarly as in the

proof of Thm. 4.2, x1, . . . , xn be an enumeration of Symb(Σ) \Y consistent with the

dependencies in S. Put Y 0 = Y and Y i = Y i−1 ∪ {xi} for i = 1, . . . , n, and Xi
1 =

σ1(Y
i) and Xi

2 = σ2(Y
i). Clearly, Y n = Symb(Σ). By Lemma 2.2, Sig(SX

i
1

1 ↓) =

σ1(Sig(SY
i↓)), Sig(Sσ1(xi)

1 ⇓) = σ1(Sig(Sxi⇓)), and Sig(Sσ1(xi)
1 ↓) = σ1(Sig(Sxi↓)).
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By induction on i = 0, . . . , n, we construct algebras Bi
1 ∈ C1 and Bi

2 ∈ C2 such

that (Bi
1 σ1) Sig(SY i↓) = (Bi

2 σ2) Sig(SY i↓) and Bi
1 Sig(SX1

1 ↓) = (A′
τ1) Sig(SX1

1 ↓) and

Bi
2 Sig(SX2

2 ↓) = (A′
τ2) Sig(SX2

2 ↓). Once this is done, putting B1 = Bn
1 and B2 = Bn

2

will complete the proof of the lemma.

Let B0
1 ∈ C1 be such that B0

1 Sig(SX1
1 ↓) = (A′

τ1) Sig(SX1
1 ↓) (such B0

1 exists, since

(A′
τ1) Sig(SX1

1 ↓) ∈ C1 Sig(SX1
1 ↓)). Similarly, let B0

2 ∈ C2 be such that B0
2 Sig(SX2

2 ↓) =

(A′
τ2) Sig(SX2

2 ↓). Clearly, B
0
1 and B0

2 satisfy the inductive hypothesis for i = 0.

Now, for the induction step, let for some i = 1, . . . , n, Bi−1
1 ∈ C1 and Bi−1

2 ∈ C2
satisfy the inductive hypothesis.

By our assumptions, either σ1(xi) ∈ Symb(Σ1) is assumed in S1 or σ2(xi) ∈
Symb(Σ2) is assumed in S2. Suppose σ1(xi) ∈ Symb(Σ1) is assumed in S1 — the

other case is symmetric and we omit it here.

Put Bi
2 = Bi−1

2 . Since C2 is a clean model of SP2, B
i
2 ∈ Mod [SP2]. Moreover,

since Symb(Sig(Sxi⇓)) ⊆ Y i−1 and C1 is a clean model of SP1, we have

(Bi
2 σ2) Sig(Sxi⇓) = (Bi−1

1 σ2) Sig(Sxi⇓) ∈ Mod [SP1 σ1 ] Sig(Sxi⇓). By compatibility of

SP1 and SP2 w.r.t. the fitting considered, (Bi
2 σ2) Sig(Sxi↓) ∈ Mod [SP1 σ1 ] Sig(Sxi↓).

Let Ai
1 ∈ Mod [SP1] be such that (Ai

1 σ1) Sig(Sxi↓) = (Bi
2 σ2) Sig(Sxi↓).

The following is a pushout in ConSig, with all four morphisms being inclusions:

Sσ1(xi)
1 ⇓

SX
i−1
1

1 ↓ Sσ1(xi)
1 ↓

SX
i
1

1 ↓

@
@

@I

�
�
��

�
�
��

@
@

@I

Let B′′
1 ∈ Alg(Σ1) be an expansion of the amalgamation (over the algebraic signature

pushout underlying the above construction signature pushout) of Bi−1
1 S

X
i−1
1

1 ↓
and

Ai
1 Sσ1(xi)↓.

Then, for each x ∈ Symb(Sig(SX
i
1

1 ↓)), either x ∈ Symb(Sig(SX
i−1
1

1 ↓)) and so

B′′
1 Sig(Sx

1↓) = Bi−1
1 Sig(Sx

1↓) ∈ C1 Sig(Sx
1↓), or x ∈ Symb(Sig(Sσ1(xi)

1 ↓)) and so

B′′
1 Sig(Sx

1↓) = Ai
1 Sig(Sx

1↓) ∈ C1 Sig(Sx
1↓). Consequently, since C1 is well-grouped,

B′′
1

Sig(S
Xi

1
1 ↓)

∈ C1
Sig(S

Xi
1

1 ↓)
. Therefore, there is Bi

1 ∈ C1 such that Bi
1

Sig(S
Xi

1
1 ↓)

=

B′′
1

Sig(S
Xi

1
1 ↓)

. We have (Bi
1 σ1) Sig(SY i−1↓) = (Bi−1

1 σ1) Sig(SY i−1↓) =

(Bi−1
2 σ2) Sig(SY i−1↓) = (Bi

2 σ2) Sig(SY i−1↓) and (Bi
1 σ1) Sig(Sxi↓) = (Ai

1 σ1) Sig(Sxi↓)

= (Bi
2 σ2) Sig(Sxi↓).

It follows now easily that the pair of algebras Bi
1 ∈ C1 and Bi

2 ∈ C2 satisfies the

requirements: (Bi
1 σ1) Sig(SY i↓) = (Bi

2 σ2) Sig(SY i↓) and Bi
1 Sig(SX1

1 ↓) =

(A′
τ1) Sig(SX1

1 ↓) and Bi
2 Sig(SX2

2 ↓) = (A′
τ2) Sig(SX2

2 ↓).

This completes the proof of Lemma 5.2. � (Lemma)

Now, back to the proof of the main theorem.

To show that C′ is complete for SP ′, let x be an assumed symbol in S ′ and

A′ ∈ Mod [SP ′] be such that A′
Sig((S′)x⇓) ∈ C′ Sig((S′)x⇓). Let
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X1 = {x1 ∈ Symb(Σ1) | τ1(x1) = x} and X2 = {x2 ∈ Symb(Σ2) | τ2(x2) = x}.
Then A′

τ1 ∈ Mod [SP1], and for all x1 ∈ X1, (A
′
τ1) Sig(Sx1

1 ⇓) ∈ C1 Sig(Sx1
1 ⇓). Since x

is assumed in S ′, all x1 ∈ X1 are assumed in S1. Hence, since C1 is complete for

SP1, (A
′
τ1) Sig(Sx1

1 ↓) ∈ C1 Sig(Sx1
1 ↓) for all x1 ∈ X1. Now, since C1 is well-grouped,

(A′
τ1) Sig(SX1

1 ↓) ∈ C1 Sig(SX1
1 ↓). Similarly we get that (A′

τ2) Sig(SX2
2 ↓) ∈

C2 Sig(SX2
2 ↓). Thus, by Lemma 5.2, A′

Sig((S′)x↓) ∈ C′ Sig((S′)x↓) as required.

To see that C′ is well-grouped, consider X ⊆ Symb(Σ′) and let A′ ∈ Alg(Σ′)

be such that for all x ∈ X, A′
Sig((S′)x↓) ∈ C′ Sig((S′)x↓). Let again

X1 = {x1 ∈ Symb(Σ1) | τ1(x1) ∈ X} and X2 = {x2 ∈ Symb(Σ2) | τ2(x2) ∈ X}.
Then for all x1 ∈ X1, (A

′
τ1) Sig(Sx1

1 ↓) ∈ C1 Sig(Sx1
1 ↓), and since C1 is well-grouped,

(A′
τ1) Sig(SX1

1 ↓) ∈ C1 Sig(SX1
1 ↓). Similarly we get that (A′

τ2) Sig(SX2
2 ↓) ∈

C2 Sig(SX2
2 ↓). Thus, by Lemma 5.2, A′

Sig((S′)X↓) ∈ C′ Sig((S′)X↓) as required. �
Example 5.3 (Ordinary signatures and algebras). Recall Examples 2.3,

3.4 and 4.4. Consider construction specifications SP1 = ⟨S1,SP1⟩ and

SP2 = ⟨S2,SP2⟩, where S1 and S2 are complete construction signatures, SP1 is a

Sig(S1)-specification and SP2 is a Sig(S2)-specification. The only fitting between

S1 and S2 is S1
ι1←− S∅

ι2−→ S2, where S∅ is the entirely empty signature with no

symbols at all. Construction specifications SP1 and SP2 are compatible w.r.t. such

fitting whenever SP1 and SP2 are consistent.

The pushout of ι1 and ι2 is the disjoint union of S1 and S2. Given two algebras

A1 ∈ Mod [SP1] and A2 ∈ Mod [SP2], {A1} is a construction model of SP1 and

{A2} is a construction model of SP2, as explained in Example 3.4. Then the sum

{A1} ⊕ {A2} is a construction model of SP1 ⊕ SP2. It consists of a single algebra

which is essentially a disjoint union of A1 and A2. �
Example 5.4 (Parameterised modules). Recall Examples 2.4, 3.5

and 4.5. Consider a “type” ι : ΣP ↪→ ΣR for parameterised modules,

ΣP -specification SPP and ΣR-specification SPR with Mod [SPR ΣP
] = Mod [SPP ].

Let SP ′
ι = ⟨S ′ι,SPR⟩ be a corresponding dependency-wise construction specification,

as explained in Example 4.5. Put S ′P = (S ′)Symb(ΣP )↓ = ⟨ΣP , ∅,≺P ⟩ for some

dependency relation ≺P ; then ι : S ′P → S ′ι is a construction signature inclusion.

Consider any construction specification SPA = ⟨SA,SPA⟩, where SA is a total

construction signature that shares with S ′P the algebraic signature and the dependency

relation, and SPA is a ΣP -specification. Then the identity morphism idΣP
on ΣP

is a construction signature morphism from S ′P to SA. Moreover, this yields a fitting

SA
idΣP←− S ′P

ι−→ S ′ι between SA and S ′ι. If Mod [SPA] ⊆ Mod [SPP ] then construction

specifications SPA and SP ′
ι are compatible w.r.t. this fitting. We may define their

sum explicitly: SPA ⊕ SP ′
ι = ⟨S ′ι,SPR ∪ ι(SPA)⟩.

Consider now a clean construction model C of SP ′
ι. The parameterised module

FC : Alg(ΣP ) → Alg(ΣR) it defines, FC = {AP 7→ AR | AR ∈ C, AP = AR ΣP
}, is

correct w.r.t. parameter specification SPP and result specification SPR, see

Example 4.5. Therefore, given A ∈ Mod [SPA] ⊆ Mod [SPP ], FC(A) is defined and,

since FC is persistent, FC(A) ∈ Mod [SPR ∪ ι(SPA)]. This is also captured at the

level of construction models: {A} is a construction model of SPA, and its

amalgamation with C yields {A} ⊕ C = {FC(A)}, which is a clean construction

model of SPA ⊕ SP ′
ι by Thm. 5.1.
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More generally, we may mimic the standard pushout approach to

parameterisation, cf. Refs. [2,6,18]. Let SPA = ⟨SA,SPA⟩ be a construction

specification with total construction signature SA, and let φ : S ′P → SA be a fitting

morphism. Suppose Mod [SPA φ] ⊆ Mod [SPP ]. Then construction specifications

SPA and SP ′
ι are compatible w.r.t. the fitting SA

φ←− S ′P
ι−→ S ′ι. Moreover, given

A ∈ Mod [SPA] (so that {A} is a construction model of SPA) and a clean

construction model C of SP ′
ι, the amalgamation {A} ⊕ C = {A′}, where A′

amalgamates A and FC(A φ), is a clean construction model of SPA ⊕ SP ′
ι.

In a similar way we may mimic other typical operations on parameterised

modules, for instance various forms of partial application of a parameterised module

to a “part” of its required argument via a fitting morphism from a subsignature of

the parameter signature, etc. �
Example 5.5 (Complex dependencies). Recall Examples 2.5, 3.6

and 4.6, and the construction signature S0 with Sig(S0)-algebras A1, . . . , A5, the

S0-construction C0 and construction specifications SP1, . . . ,SP6 with construction

signature S0.
Let S ′0 = Sd0↓ (so that Σ′

0 = Sig(S ′0) contains all symbols in S0 except for e : Nat ,

with definedness and dependencies in S ′0 inherited from S0) and let S ′′0 be as Se0↓
except that a : Nat is assumed in S ′′0 (so that Σ′′

0 = Sig(S ′′0 ) contains all symbols in

S0 except for d : Nat). We have the obvious fitting S ′0
ι′←− (S ′′0 )e⇓

ι′′−→ S ′′0 between S ′0
and S ′′0 , where ι′ and ι′′ are signature inclusions, and the pushout of ι′ and ι′′ yields

S0 with inclusions τ ′ : S ′ → S0 and τ ′′ : S ′′ → S0.
Consider then the following two specifications:

SP ′
4 = SP ′

N then (b = succ(a) ∨ b = succ(succ(a))) ∧
(c = succ(succ(a)) ∨ c = succ(succ(succ(a)))) ∧ d = succ(b)

SP ′′
4 = SP ′′

N then (b = succ(a) ∨ b = succ(succ(a))) ∧
(c = succ(succ(a)) ∨ c = succ(succ(succ(a)))) ∧ e = succ(c)

SP ′
5 = SP ′

N then b = succ(succ(a)) ∧ c = succ(succ(a)) ∧ d = succ(c)

SP ′′
5 = SP ′′

N then b = succ(succ(a)) ∧ c = succ(succ(a)) ∧ e = succ(c)

where SP ′
N and SP ′′

N are SPN (see Example 4.6) rewritten to the signature Σ′
0 and

Σ′′
0 , respectively (equivalently, take SP ′

N = SPN τ ′ and SP ′′
N = SPN τ ′′). Let SP ′

4 =

⟨S ′0,SP
′
4⟩, SP

′′
4 = ⟨S ′′0 ,SP

′′
4⟩, SP

′
5 = ⟨S ′0,SP

′
5⟩ and SP

′′
5 = ⟨S ′′0 ,SP

′′
5⟩.

SP ′
4 and SP ′′

5 are not compatible; neither are SP ′
5 and SP ′′

4 .

On the other hand, SP ′
4 and SP ′′

4 are compatible, and their sum

SP ′
4 ⊕ SP

′′
4 = ⟨S0, τ ′(SP ′

4) ∪ τ ′′(SP ′′
4)⟩ is equivalent to SP4 (see Example 4.6):

Mod [τ ′(SP ′
4) ∪ τ ′′(SP ′′

4)] = Mod [SP4].

The S ′0-construction C′0 = C0 τ ′ is a (clean) construction model of SP ′
4. Perhaps

surprisingly, the S ′′0 -construction C′′0 = C0 τ ′′ is not a construction model of SP ′′
4

— since a : Nat is assumed here, and SP ′′
4 does not constrain its value, C′′0 is not

complete for SP ′′
4 . Consider the following Σ′′

0 -algebras that interpret Nat , zero : Nat

and succ : Nat in the standard way, and for i = 0, 1, . . .:

Ai
1 = {a = i, b = i+ 1, c = i+ 2, e = i+ 3}
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Ai
3 = {a = i, b = i+ 2, c = i+ 3, e = i+ 4}

Ai
4 = {a = i, b = i+ 2, c = i+ 2, e = i+ 3}

Ai
5 = {a = i, b = i+ 1, c = i+ 3, e = i+ 4}

Then C′′ = {Ai
1, A

i
3, A

i
4, A

i
5 | i = 0, 1, . . .} is a (clean) construction model of SP ′′

4 .

Moreover, C′0 ⊕ C′′ is a construction model of SP ′
4 ⊕ SP ′′

4 by Thm. 5.1 – hardly

surprising, since in fact C′0 ⊕ C′′ = C0.
SP ′

5 and SP ′′
5 are compatible as well. Their sum SP ′

5 ⊕ SP
′′
5 =

⟨S0, τ ′(SP ′
5) ∪ τ ′′(SP ′′

5)⟩ is stronger than SP5 (see Example 4.6) in the sense that

every construction model of SP ′
5 ⊕ SP ′′

5 is a construction model of SP5,

CMod [SP ′
5 ⊕ SP

′′
5 ] ⊆ CMod [SP5] (this is a stronger property than

Mod [τ ′(SP ′
5) ∪ τ ′′(SP ′′

5)] ⊆ Mod [SP5]). Construction models of CMod [SP ′
5 ⊕ SP

′′
5 ]

may be built by amalgamating clean construction models of SP ′
5 and SP ′′

5 . For

instance, {A4 Σ′
0
} is a clean construction model of SP ′

5 and {Ai
4 | i = 0, 1, . . .} is a

clean construction model of SP ′
5. Their amalgamation is {A4} which is a clean

construction model of SP ′
5 ⊕ SP

′′
5 (and of SP5 as well). �

6 Final Remarks

We propose an algebraic framework to uniformly deal with modules that covers

non-parameterised and parameterised cases, as well as capturing complex

dependencies between parts of modules which cannot be captured in standard

approaches to parameterisation without using higher-order dependencies. The

advantage of this proposal is that it keeps constructions, the semantic objects

modelling the modules considered, relatively simple — they just are classes of

algebras, subject to a simple technical condition which reflects the role of the

module elements defined by the module (see Sect. 3). To specify such constructions,

classified by construction signatures (see Sect. 2), we propose the use of construction

specifications, essentially denoting classes of algebras (as in Ref. [18]). The

definition of what it means for a construction to satisfy such a construction

specification may appear a bit complex (see Sect. 4) but in our view they quite

intuitively capture both the parameterisation mechanism and the dependency

structure involved in specifying a construction. Theorem 4.2 offers simple and

methodologically justified sufficient conditions to ensure that a construction

specification has a construction model. We introduce the sum operation (see

Sect. 5) as a basic tool to combine construction specifications, and show that under

simple expected conditions, the operation is compositional in the sense that for any

construction specifications, their respective constructions may be combined to yield

a construction model of their sum. This operation is shown to cover typical uses of

algebraic specifications of standard parameterised modules.

There are a number of directions which require further investigation and

development.

Perhaps most importantly, we have not provided any notion of refinement for

construction specifications. While simple refinements that just require classes of

construction models to be narrowed in refinement steps (cf. Ref. [18]) may be used

here, it soon turns out that this is unsatisfactory. The problem is that reducts along

construction signature morphisms, a typical construct allowing auxiliary symbols to



138 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

be introduced in the course of stepwise specification refinement, do not in general

preserve construction models of a construction specification (see the remarks at the

beginning of Sect. 5, with a specific instance of the problem hidden in Example 5.5).

The solution must be to consider construction signature morphisms of a different

kind, with different properties than those used here for putting together

construction specifications. This was done in Ref. [12], and used there to propose a

construction-based approach to architectural design and development, in the style of

architectural specifications and refinements in Casl[5,14]. It would be interesting

and potentially useful to develop a uniform treatment of both kinds of construction

signature morphisms. Useful sufficient conditions that ensure compatibility of

reducts w.r.t. construction signature morphisms with hiding and translation for

constructor specifications are needed here.

We assumed from the beginning that we deal with finite algebraic signatures

only. Further developments, partially carried out in Ref. [12], are needed to remove

this assumption and allow the use of infinite signatures as well (for instance, to

algebraically model polymorphism, or modules with higher-order operations). An

arbitrary mixture of infinite signatures and strict dependency orders may raise

methodological doubts and leads to technical troubles, see Ref. [11] for discussion

and a proposed solution to use dependency structures of a bounded height. In fact,

the essence of the proofs here indicates that the induction on the number of

signature elements used in the key proofs may be replaced by induction on the

height of the dependency chains in the construction signatures, see Ref. [12].

We worked in this paper with standard algebraic signatures and algebras. An

important further task should be to follow Ref. [12] and move developments to an

arbitrary institution[7] equipped with additional structure to introduce the sets of

symbols used in the signatures, similarly as in the semantics of Casl[13]. We refrained

from doing this here to keep the intuition, presentation and technicalities a bit clearer

— we hope!

Finally, more examples and case studies are needed to better illustrate the use of

the framework proposed as well as to evaluate its potential strengths and weaknesses.
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