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1 Introduction

In the modern use of logic in theoretical computer science, the notion of

inconsistency (and its semantic companion, unsatisfiability) gains importance in the

area of formal specification and software development with formal methods. A

central idea is that in an early phase of the development process, initial

requirements are first formulated informally and then are formalized, such that

intended logical consequences can be checked, and inconsistencies (that prevent the

development of a correct implementation) can be found. And indeed, not only

programs are notoriously buggy, but also their specifications tend to be incorrect

and inconsistent. Modern specification languages like CafeOBJ and CASL come

with libraries of specifications that also provide examples of such inconsistencies.

These languages are feature-rich and complex, which eases the development of

non-trivial inconsistent theories1. In this context, we should also mention research

on upper ontologies, which are usually quite large and inconsistent first-order

theories. E.g. a number of inconsistencies have been found in the SUMO ontology

by Horrocks and Voronkov[7]. The SUMO $100 Challenges2 explicitly calls for

demonstrating the consistency or inconsistency of (parts of) SUMO. Needless to say

that so far, only inconsistencies have been found.

However, the origins of the field are much older. The study of logical

inconsistencies has a long tradition that goes back at least to Aristotle. In

particular, Aristotle examined contemporary philosophical arguments and revealed

inconsistencies contained therein. For example, Anaxagoras imagined “the mind to

1Of course, the set of logical consequences of an inconsistent theory is always trivial. However, the

axioms of the theory itself may have varying complexity and subtlety of interaction in order to lead

to the inconsistency.
2See http://www.cs.miami.edu/~tptp/Challenges/SUMOChallenge/.
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be the initiating principle of all things, and suspending on its axis the balance of the

universe; affirming, moreover that the mind is a simple principle, unmixed, and

incapable of admixture, he mainly on this very consideration separates it from all

amalgamation with the soul; and yet in another passage he actually incorporates it

with the soul. This (inconsistency) Aristotle has also observed.”3

Aristotle himself created a rich source of what perhaps cannot be called

inconsistencies but false theorems: a number of his syllogisms exhibit the existential

fallacy, i.e. have implicit existential assumptions, which means that they are

unsound when read literally, like, e.g., the Fesapo syllogism:

No humans are perfect.

All perfect creatures are mythical.

Some mythical creatures are not human.

After Aristotle there followed a long period of insufficient research into logical

inconsistency, interspersed only with some scholastic arguments, which finished as

late as in the 19th century with the discoveries of Boole, Frege and others. In

particular, Frege created a rich and powerful logical system in his “Begriffsschrift”.

It was discovered to be inconsistent by Russell in the early 20th century, by a proof

that resembles the barber paradox: assume that there is a town with a barber that

shaves all people who do not shave themselves. Then the barber shaves himself iff

he does not — a contradiction.

The origin of this inconsistency is the power of self-application, i.e. the possibility

to apply predicates to themselves. For example, monosyllabic is an adjective that does

not hold true of itself, whereas polysyllabic does. Now let non-self-referential be the

adjective expressing that an adjective does not hold for itself. That is, monosyllabic is

non-self-referential (and polysyllabic isn’t). Is non-self-referential non-self-referential?

It is the merit of the modern web ontology language OWL-full4 to have provided, in

the early 21st century and more than 120 years after Frege, a logic where predicates

can, again, be applied to themselves.

In the present work, we contribute to the field of inconsistency by developing

generic, i.e. logic-independent, notions of inconsistency in the framework of institution

theory. Not unexpectedly, it turns out that there is a variety of such notions (in

particular, Aristotle, Hilbert and absolute inconsistency), which we relate to each

other and illuminate in a number of examples (for simplicity, we choose variants of

propositional logic here).

2 Institutions and Logics

As indicated in the introduction, the study of inconsistency and unsatisfiability

can be carried out largely independently of the nature of the underlying logical system.

We use the notion of institution introduced by Goguen and Burstall[5] in the late

1970s. It approaches the notion of logical system from a relativistic view: rather

than treating the concept of logic as eternal and given, it accepts the need for a large

variety of different logical systems, and instead asks about common principles shared

3Quoted from http://www.ccel.org/ccel/schaff/anf03.iv.xi.xii.html.
4See http://www.w3.org/TR/owl-ref.
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across logical systems. For an overview of the development of the theory since its

inception, see, e.g., the recent monograph by Diaconescu[3].

While the notion of institution adopts a model-theoretic perspective, it was later

complemented by the more proof-theoretic notion of entailment system (also called

π-institution)[4,9].

What are the essential ingredients of a logical system? It seems safe to assume

that a logical system has a notion of sentence, and a syntactic entailment relation

⊢ on sentences that allows deriving conclusions from given sets of assumptions. On

the model-theoretic side, there is, moreover, a notion of satisfaction of sentences by

models, typically denoted as an infix satisfaction relation |=. The latter leads to

the relation of logical consequence (all models satisfying the premises also satisfy the

conclusion); this relation is also denoted by |=. A logic is sound if Γ ⊢ φ implies

Γ |= φ, and complete if the converse implication holds.

Moreover, an important observation is that all this structure depends on the

context, i.e. the set of non-logical (or user-defined) symbols. These contexts are called

signatures, and are formalized just as objects of an abstract category. The reader not

familiar with category theory or not interested in the formal details can safely skip

the rest of this section and just keep in mind the above informal motivations.

Definition 2.1. An entailment system [9] consists of

– a category SignE of signatures and signature morphisms,

– a functor SenE : SignE −→Set giving, for each signature Σ, the set of sentences

SenE(Σ), and for each signature morphism σ : Σ−→Σ′ the sentence translation

map SenE(σ) : SenE(Σ)−→SenE(Σ′), where SenE(σ)(φ) is often written as σ(φ),

– for each signature Σ ∈ |SignE |, an entailment relation ⊢Σ ⊆ P(Sen(Σ))×Sen(Σ)

such that the following properties are satisfied:

1. reflexivity: for any φ ∈ Sen(Σ), {φ} ⊢Σ φ,

2. monotonicity: if Ψ ⊢Σ φ and Ψ′ ⊇ Ψ then Ψ′ ⊢Σ φ,

3. transitivity: if Ψ ⊢Σ φi for all i ∈ I and Ψ∪{φi | i ∈ I} ⊢Σ ψ, then Ψ ⊢Σ ψ,

4. ⊢-translation: if Ψ ⊢Σ φ, then for any σ : Σ−→Σ′ in Sign, σ(Ψ) ⊢Σ′ σ(φ).

A theory is a pair (Σ,Γ) where Γ is a set of Σ-sentences. An entailment theory

morphism5 (Σ,Γ) −→ (Σ′,Γ′) is a signature morphism σ : Σ −→ Σ such that Γ′ ⊢Σ′

σ(Γ).

Let Cat be the category of categories and functors.6

Definition 2.2. An institution I = (SignI , SenI ,ModI , |=I) consists of

– a category SignI of signatures,

– a functor SenI : SignI−→Set (as for entailment systems),

5also called interpretation of theories.
6Strictly speaking, Cat is not a category but only a so-called quasicategory, which is a category that

lives in a higher set-theoretic universe[6]. However, we ignore this issue here. Indeed, foundational

questions such as this are ignored by most mathematicians and computer scientists, and ignoring

them provides a rich source of inconsistencies.
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– a functor ModI : (SignI)op −→ Cat giving, for each signature Σ, the category

ModI(Σ) of models, and for each signature morphism σ : Σ−→ Σ′, the reduct

functor ModI(σ) : ModI(Σ′)−→ModI(Σ), where ModI(σ)(M ′) is often written

as M ′|σ, and

– a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ SignI

such that for each σ : Σ−→Σ′ in SignI , the satisfaction condition

M ′ |=I
Σ′ σ(φ) ⇐⇒ M ′|σ |=I

Σ φ

holds for all M ′ ∈ ModI(Σ′) and all φ ∈ SenI(Σ).

We omit the index I when it is clear from the context. Given a signature Σ, a

set Γ ⊆ Sen(Σ) of sentences, and a sentence φ ∈ Sen(Σ), we say that φ is a logical

consequence of Γ, and write Γ |=Σ φ, if for all M ∈ Mod(Σ), M |=Σ Γ implies

M |=Σ φ, where by definition M |=Σ Γ iff M |=Σ ψ for all ψ ∈ Γ. Moreover, we write

Γ |=Σ ∆ for ∆ ⊆ Sen(Σ) if Γ |=Σ φ for each φ ∈ ∆.

A logic consists of an entailment system and an institution that agree on their

signature and sentence parts. Usually, a logic is required to be sound, that is, Γ ⊢Σ φ

implies Γ |=Σ φ. If the converse holds, the logic is complete.

A theory is defined as for entailment systems. An institution theory morphism

(Σ,Γ) −→ (Σ′,Γ′) is a signature morphism σ : Σ −→ Σ′ such that Γ′ |=Σ′ σ[Γ]. Let

Th(I) denote the category of theories and institution theory morphisms in I. Each

theory (Σ,Γ) inherits sentences from SenI(Σ), while the models are restricted to those

models in ModI(Σ) that satisfy all sentences in Γ. We can thus define the institution

ITh of theories over I by taking Th(I) as the signature category, with the indicated

sentence and model functors.

Model morphisms do not matter in the current technical development, so we elide

them in the following examples.

Example 2.3. Classical propositional logic (CPL) has the category Set of sets
and functions as its signature category, with sets understood as sets of propositional

variables. Σ-sentences are given by the grammar

φ ::= p | ¬φ |φ1 ∧ φ2 |φ1 ∨ φ2 |φ1 → φ2 | ⊤ |⊥

where p ∈ Σ is a propositional variable. Sentence translation acts in the obvious way

by replacing propositional variables with their images under the signature morphism

(which is just a map).

Σ-models are truth valuations, i.e. functions from Σ to {T, F}. Given a signature

morphism σ : Σ1 −→Σ2, the σ-reduct of a Σ2-model M2 : Σ2 −→{T, F} is given by

composition: M2|σ =M2 ◦ σ.
Satisfaction is inductively defined by the usual truth table semantics. Since

reduct is composition, it is straightforward to prove the satisfaction condition.7

7A precise argument is as follows: the Boolean operations form a signature such that Sen is the free

algebra functor for algebras over that signature (these algebras are like Boolean algebras but without

satisfying any equational laws). {T, F} also is such an algebra, denoted by Bool , and for a model

M , sentence evaluation is εBool ◦ Sen(M), where ε is the counit of the adjunction of algebras over

sets. Then the satisfaction condition is εBool ◦ Sen(M) ◦ Sen(σ) = εBool ◦ Sen(M ◦ σ), which is just

functoriality of Sen.
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The entailment relation is the smallest relation satisfying the properties listed in

Table 1, plus the property ¬¬φ ⊢ φ and the usual axiom rule, i.e. Γ ⊢ ϕ whenever

ϕ ∈ Γ. One then, of course, needs to show that this relation is really an entailment

relation. Reflexivity is immediate from the axiom rule, and monotonicity and ⊢-
translation are shown by an easy induction over proofs. Transitivity is non-trivial, as

it amounts to cut elimination; for a detailed proof, see, for example, Ref. [14].

This logic is sound and complete.

A Heyting algebra H is a partial order (H,6) with a greatest element ⊤ and a

least one ⊥ and such that any two elements a, b ∈ H

– have a greatest lower bound a ∧ b and a least upper bound a ∨ b, and

– there exists a greatest element x such that a ∧ x 6 b; this element is denoted

a⇒ b.

In a Heyting algebra, we can define a derived operation ¬ by ¬a := a⇒ ⊥. A Heyting

algebra morphism h : H1−→H2 is a map preserving all the operations (i.e. ∧, ∨, ⇒,

⊤, ⊥).

Example 2.4. Heyting-algebra based intuitionistic propositional logic

(IPL-HA) inherits the signature category and sentences from CPL.

A Σ-model (ν,H) consist of a Heyting algebra H together with a valuation

function ν : Σ −→ |H| into the underlying set |H| of H. Again, model reduct is

defined by composition.

Using the Heyting algebra operations, it is straightforward to extend the

valuation ν of a Σ-model (ν,H) from propositional variables to all sentences:

ν# : Sen(Σ) −→ |H|. Then, (ν,H) satisfies a sentence φ iff ν#(φ) = ⊤. The

satisfaction condition follows similarly as for CPL.

The entailment relation is the minimal relation satisfying the properties listed in

Table 1. This turns IPL-HA into a sound and complete logic.

3 Logical Connectives

In an abstract logic, it is possible to define logical connectives purely by their

proof-theoretic and model-theoretic properties. We begin with the proof theoretic

approach, and adapt the standard definitions[8]. The defining proof-theoretic

properties of some standard connectives are shown in Table 1. Here, we mean by

‘defining’ that the respective connective is determined uniquely up to provable

equivalence; that is, we have

Definition 3.1. Two Σ-sentences ϕ, ψ are provably equivalent if ϕ ⊢Σ ψ and

ψ ⊢Σ ϕ.

Proposition 3.2. The connectives ∨, ∧, →, ⊤, ⊥ are determined uniquely

up to provable equivalence by the respective properties shown in Table 1.

Proof We do only the case for ∨, the other cases being very similar. Let a Σ-sentence

ρ satisfy the defining property of ϕ∨ψ for Σ-sentences ϕ, ψ. Then ρ ⊢Σ ϕ∨ψ because

ϕ ⊢Σ ϕ∨ψ and ψ ⊢Σ ϕ∨ψ, which in turn follows from the defining property of ϕ∨ψ
because ϕ ∨ ψ ⊢Σ ϕ ∨ ψ. The converse entailment is analogous. �

They properties in Table1 correspond directly to standard proof rules; the ‘only if’

direction for implication → is known moreover as the deduction theorem. Importantly,
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the defining property of falsum ⊥ is commonly referred to as ex falso quodlibet. A

logic is said to have a proof-theoretic connective if it is possible to define an operation

on sentences with the properties specified in Table 1. For example, both IPL-HA

and CPL have all proof-theoretic connectives.

Table 1 Properties of proof-theoretic connectives

connective defining property

proof-theoretic conjunction ∧ Γ ⊢ φ ∧ ψ iff Γ ⊢ φ and Γ ⊢ ψ
proof-theoretic disjunction ∨ φ ∨ ψ,Γ ⊢ χ iff φ,Γ ⊢ χ and ψ,Γ ⊢ χ
proof-theoretic implication → Γ, φ ⊢ ψ iff Γ ⊢ φ→ ψ

proof-theoretic truth ⊤ Γ ⊢ ⊤
proof-theoretic falsum ⊥ ⊥ ⊢ φ
proof-theoretic negation ¬ Γ, φ ⊢ ⊥ iff Γ ⊢ ¬φ

Next, we introduce semantic connectives. We say that a logic has a semantic

connective if the corresponding sentences exist for defining properties analogous to

the ones given in Table 1 but with entailment ⊢ replaced with logical consequence

|=. It is then clear that the analogue of Proposition 3.2 holds, i.e. that semantic

connectives are essentially unique when they exist, where ‘essentially’ means up to

logical equivalence in the obvious sense:

Definition 3.3. Two Σ-sentences ϕ, ψ are logically equivalent if ϕ |=Σ ψ and

ψ |=Σ ϕ.

The following is clear:

Proposition 3.4. If L is sound and complete, then proof-theoretic and

semantic connectives coincide (i.e. one exists iff the other does, and in this case they

are the same).

Instead of defining semantic connectives via logical consequence, we may consider

a stronger definition inspired by Tarski semantics, i.e. phrased in terms of satisfaction

in a given model. The corresponding defining conditions are given in Table 2. A logic

is said to have a strong semantic connective if it is possible to define an operation on

sentences with the specified properties. It is easy to see the following.

Proposition 3.5. Every strong semantic connective is a semantic connective.

The converse does not hold. E.g. both CPL and IPL-HA have all semantic

connectives; due to completeness, these coincide with the proof-theoretic ones.

However, while all these connectives are strong in CPL, in IPL-HA only

conjunction, truth, and falsum are strong. It is an interesting question whether

there is a natural example of a logic that has semantic connectives that are neither

strong nor, via completeness, inherited from the proof theory.

Table 2 Properties of strong semantic connectives

connective defining property

semantic disjunction ∨ M |= φ ∨ ψ iff M |= φ or M |= ψ

semantic conjunction ∧ M |= φ ∧ ψ iff M |= φ and M |= ψ

semantic implication → M |= φ→ ψ iff M |= φ implies M |= ψ

semantic negation ¬ M |= ¬φ iff M ̸|= φ

semantic truth ⊤ M |= ⊤
semantic falsum ⊥ M ̸|= ⊥
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4 Inconsistency and Unsatisfiability

In the sequel, let us fix a logic L (in the above sense), which a priori need neither

be sound nor complete.

The notion of unsatisfiability is quite clear:

Definition 4.1. A theory is unsatisfiable if it has no models.

Clearly, if L has a semantic falsum ⊥ then T is unsatisfiable iff T |= ⊥. However,

there is more to inconsistency than just unsatisfiability8, as witnessed by the historical

development of research on inconsistency. According to Aristotle, inconsistency means

that both some sentence as well as its negation can be proved:

Definition 4.2. Assume that L has a distinguished connective ¬ (not

necessarily being a proof-theoretic or semantic negation9), and let T be a theory in

L. We say that T is Aristotle inconsistent if there is some sentence φ such that

T ⊢ φ and T ⊢ ¬φ.
This notion has several disadvantages. Firstly, it presupposes a notion of

negation, which is not available in all logics. More importantly, it classifies

paraconsistent logics as inconsistent, although of course paraconsistent logics were

not known at Aristotle’s time.

A modern definition of inconsistency overcoming this problem was coined by

David Hilbert. Hilbert was the initiator of the famous Hilbert program, the aim

of which was to prove the consistency of all of mathematics by reducing it to the

consistency of a small number of finitary principles, for which there is enough faith

into their consistency. Hilbert’s programme greatly failed, as was shown by Gödel’s

second incompleteness theorem (actually, the name is misleading: it should be called

Gödel’s Great Inconsistency Theorem):

Theorem 4.3 (Gödel). There is a first-order theory T of zero, successor,

addition and ordering on the natural numbers (which is actually quite simple and

weak), such that for any extension T ′ of T , if T ′ can prove its own consistency

(encoded as a statement on natural numbers), then T ′ is inconsistent.10

Hence, although Hilbert’s programme was a powerful and striking idea, in the

end it was doomed to be unsuccessful. As a result, the question whether theories

like ZFC (which is used as the foundation of mathematics and theoretical computer

science!) are consistent or inconsistent is open. Indeed, the only way to firmly resolve

this open question would be to prove the inconsistency of ZFC. But all we have so

far in this respect are relative results, such as another famous result by Gödel:

ZFC is inconsistent iff ZF is inconsistent11,

which means that when looking for an inconsistency proof for ZF , we equally well

may use the stronger (and hence easier to prove inconsistent) system ZFC.

8Even though the Rolling Stones prioritize unsatisfiability.
9However, let us assume that if there is a proof-theoretic negation, then this connective is used.

Otherwise, the notion of inconsistency of course depends on the chosen connective.
10For first-order logic, the various notions of inconsistency we shall discuss are equivalent; hence we

can be unspecific here.
11Actually, Gödel proved the corresponding statement about unsatisfiability, but by Gödel’s

completeness theorem for first-order logic, inconsistency and unsatisfiability are equivalent here;

see also our Prop. 5.3 below.
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But even though Hilbert’s programme failed, Hilbert left us with a modern

definition of inconsistency:

Definition 4.4 (Hilbert). Assume that L has a distinguished constant⊥ (not

necessarily being a proof-theoretic or semantic falsum12). Then T is ⊥-inconsistent

if T ⊢ ⊥.

Still, this definition does not work with logics that do not have ⊥, for example

positive logic or equational logic. Hilbert therefore also proposed a notion of

inconsistency that has no prerequisites (i.e. no logical connectives are needed) and

simultaneously is most powerful one among the notions considered so far, in terms

of the logical strength of inconsistent theories:

Definition 4.5 (Hilbert). A theory T over Σ is absolutely inconsistent if

T ⊢ φ for all Σ-sentences φ.

This definition abstracts the principle of ex falso quodlibet, without however

postulating the existence of ⊥.

Example 4.6. In equational logic, the theory {f(x, y) = y, f(x, y) = f(y, x)}
is absolutely inconsistent (we have x = f(y, x) = f(x, y) = y, so that every equation

is derivable). None of the other notions of inconsistency mentioned so far apply here,

as equational logic has neither negation nor falsum.

We should also mention a notion of inconsistency introduced by Emil Post: a

propositional theory T is Post-inconsistent if it can derive a propositional variable

not occurring in the axioms of T (the signature possibly needs to be enlarged to

obtain such a variable). Unfortunately, this notion is too closely tied to a specific

logical system to be of interest here. 13

The different notions of inconsistency14 are related as follows:

Proposition 4.7.

1. If L has a constant ⊥ then absolute inconsistency implies ⊥-inconsistency, and if

L has an operation ¬ then absolute inconsistency implies Aristotle inconsistency.

2. In the presence of proof-theoretic falsum ⊥, absolute inconsistency and

⊥-inconsistency are equivalent.

3. In the presence of proof-theoretic falsum and negation, all three notions of

inconsistency are equivalent.

Proof 1. Obvious.

2. Directly from the definition of proof-theoretic falsum.

3. By 1. and 2., it remains to show that Aristotle inconsistency implies absolute

inconsistency. By the definition of proof-theoretic negation, from Γ ⊢ ¬φ we obtain

Γ ∪ {φ} ⊢ ⊥. Together with Γ ⊢ φ, this leads to Γ ⊢ ⊥. �

12Again, let us assume that if there is a proof-theoretic falsum, then this is used. Otherwise, the

notion of inconsistency depends on the chosen constant.
13Given mild assumptions on the signature category it would be rather easy to come up with a

general formulation of this notion, e.g. saying that T derives a non-trivial (i.e. not everywhere

satisfied) sentence in a subsignature that is disjoint from a subsignature supporting T . However, in

order to be really useful, also some notion of substitution is needed, resulting in a rather complicated

definition.
14We credit http://home.utah.edu/~nahaj/logic/structures/systems/inconsistent.html for an

excellent overview of these notions.
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5 Soundness and Completeness, with an Application to Paraconsistency

Inconsistency and unsatisfiability also play a great role in determining whether

a logic is sound or complete.

We begin with a simple lemma showing that falsum and truth are two sides of

the same coin:

Lemma 5.1. In presence of proof-theoretic negation, falsum and truth,

¬⊥ ⊢⊣ ⊤ and ¬⊤ ⊢⊣ ⊥.

Here, we use ⊢⊣ to denote mutual entailment.

We say that proof-theoretic negation is classical, if ¬¬φ ⊢ φ.
Proposition 5.2. Proof-theoretic negation is classical in complete logics with

strong semantic negation.

Proof By strong semantic negation, ¬¬φ |= φ, hence by completeness, ¬¬φ ⊢ φ.�
Soundness and completeness, while defined in terms of entailment, can be

characterized completely in terms of inconsistency and unsatisfiability. Recall from

Proposition 4.7 that all notions of inconsistency are equivalent in logics with

proof-theoretic falsum and negation, so we just use the unspecific term inconsistent

in the following statement.

Proposition 5.3. Let L be a logic with both proof-theoretic and semantic

negation, truth and falsum, such that proof-theoretic negation is classical. Then

1. L is sound if and only if every inconsistent theory in L is unsatisfiable.

2. L is complete if and only if every unsatisfiable theory in L is inconsistent.

Proof (1), “⇒” Let T be inconsistent, i.e. T ⊢ ⊥. By soundness, T |= ⊥, hence T

is unsatisfiable.

(1), “⇐” Let T ⊢ φ, then T ∪ {¬φ} is inconsistent, hence, by the assumption,

also unsatisfiable. But this means that T |= φ.

(2), “⇒” Let T be unsatisfiable, i.e. T |= ⊥. By completeness, T ⊢ ⊥, hence T

is inconsistent.

(2), “⇐” Let T |= φ. Then T ∪{¬φ} is not satisfiable, and hence inconsistent by

the assumption. From T ∪ {¬φ} ⊢ ⊥, we obtain T ⊢ ¬¬φ and hence by classicality

T ⊢ φ. �
It should be stressed that these proofs, which avoid any form of negated

relations such as ̸⊢ or ̸|=, become less elegant when one reformulates them in terms

of consistency and satisfiability, as some over-cautious logicians do — logicians tend

to be easily frightened by inconsistencies15. The more natural relation is indeed that

between inconsistency and unsatisfiability.

Definition 5.4. A logic is paraconsistent if it has a negation operator for

which Aristotle inconsistency does not imply absolute inconsistency. Such an operator

is then called a paraconsistent negation.

Example 5.5. Belnap’s four-valued logic[1] has, in the base version, the same

syntax as propositional logic. It evaluates formulas over four truth values t (true), f

15This goes as far as the Wikipedia website for “Inconsistency” being redirected to “Consistency”!



150 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

(false), ⊥̈ (unknown), and ⊤̈ (contradictory); i.e. models are maps from the set of

propositional variables into 4 = {t, f, ⊥̈, ⊤̈}, and sentences are evaluated recursively to

a truth value in 4 using prescribed truth tables for the connectives. Negation ¬ works

as usual on t and f , and has ⊥̈ and ⊤̈ as fixed points. Of course, the constant falsum

(still written ⊥ in the logical syntax) for use in ⊥-inconsistency evaluates to f , not

⊥̈. Both t and ⊤̈ are designated truth values, i.e. for a Σ-model M and a Σ-sentence

φ, M |=Σ φ iff φ evaluates to either t or ⊤̈ in M . Thus, the theory T = {a,¬a}
(for some propositional variable a) is Aristotle inconsistent but not, assuming any

sound entailment system, ⊥-inconsistent (and hence not absolutely inconsistent), as

T ̸|=Σ ⊥: By assigning the truth value ⊤̈ to a, we obtain a model M with M |=Σ T

but not M |=Σ ⊥. Thus, ¬ is indeed a paraconsistent negation.

Proposition 5.6.

1. A paraconsistent negation cannot be proof-theoretic.

2. In a sound and complete logic, paraconsistent negation cannot be semantic.

Proof 1. By Prop. 4.7.

2. In a sound and complete logic, a semantic negation is also a proof-theoretic

negation. �

6 Conservative Extensions

In the structured development of theories, the notion of conservativity plays a

crucial role[2]. Like many other concepts considered here, conservativity comes in two

flavours, a syntactic and a semantic one:

Definition 6.1. A theory morphism σ : T1−→T2 is

1. model-theoretically conservative if each T1-model M1 has a σ-expansion to a

T2-model M2, i.e. M2|σ =M1;

2. consequence-theoretically conservative if for each sentence φ of the same

signature as T1,

T2 |= σ(φ) implies T1 |= φ;

3. proof-theoretically conservative if the same holds for ⊢, i.e. for each sentence φ

of the same signature as T1,

T2 ⊢ σ(φ) implies T1 ⊢ φ.

The relation between these notions is as follows:

Proposition 6.2. Model-theoretic conservativity implies consequence-

theoretic conservativity (but not vice versa). In a sound and complete logic,

consequence-theoretic and proof-theoretic conservativity are equivalent.

Proof Concerning the first statement, let T2 |= σ(φ). We need to show T1 |= φ. Let

M1 be a T1-model. By model-theoretic conservativity, it has an expansion M2 to a

T2-model; hence also M2 |= σ(φ). By the satisfaction condition, M1 =M2|σ |= φ.

The second statement is obvious. �
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The importance of conservativity is that it allows reducing inconsistency (resp.

unsatisfiability) of a smaller theory to that of larger one, using the following obvious

result:

Proposition 6.3.

1. Consequence-theoretically conservative theory morphisms reflect

unsatisfiability.

2. Proof-theoretically conservative theory morphisms reflect inconsistency.

Typically, the target of a conservative theory morphism is larger than (or even

an extension of) the source. At first sight, it may sound strange to reduce the goal of

showing inconsistency of a given theory to that of showing it for a larger one. However,

note that generally, larger theories have more axioms, and hence it is potentially

easier to prove that they are inconsistent. (Indeed, the largest theory, consisting of

all sentences, is always absolutely inconsistent.) Moreover, small inconsistent theories

can be boring: who is interested in the smallest inconsistent theory consisting just

of falsum? For example, Frege’s Begriffsschrift (which is a conservative extension of

falsum) is much more interesting.

7 Conclusion

We have summarized and discussed recent research aimed at proving

inconsistency of specifications in a structured and institution-independent way.

These efforts form a part of a larger program aimed at proving the inconsistency of

the empty specification, i.e. inconsistency of the meta-framework underlying most of

the formalisms under consideration, Zermelo-Fraenkel set theory with choice (ZFC)

and hence, by the independence of the axiom of choice as mentioned above, of ZF

set theory without choice. In particular, recent research in pure mathematics has

been concerned with finding sufficient conditions for the inconsistency of ZF. E.g. it

has been shown that the inconsistency of ZF can be reduced to (and is therefore

equivalent to) provability in ZF of

– the existence of natural numbers a, b, c and n ≥ 3 such that an + bn = cn

(Andrew Wiles[15])

– the existence of natural numbers (a, b, x, y) ̸= (2, 3, 3, 1) such that xa − yb = 1

(Preda Mihăilescu[10])

– the existence of a simply connected closed 3-manifold not homeomorphic to S3

(Grigori Perelman[11,12,13])

Moreover, recently completed work in automated theorem proving, Thomas Hales’

FlysPecK project (http://code.google.com/p/flyspeck/), has been directed at

reducing the inconsistency of ZF to the existence of a sphere packing of average

density strictly less than π/18. In summary, there is good hope that the paradise of

mathematics, a widely accepted inconsistent set of foundations, will soon be

re-opened.
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[4] Fiadeiro J, Sernadas A. Structuring theories on consequence. In: Sannella D, Tarlecki A, eds.

5th WADT, LNCS. Springer Verlag, 1988, 332: 44–72.

[5] Goguen JA, Burstall RM. Institutions: Abstract model theory for specification and

programming. Journal of the Association for Computing Machinery, 1992, 39: 95–146. LNCS,

1984, 164: 221–256.

[6] Herrlich H, Strecker G. Category Theory. Allyn and Bacon, Boston, 1973.

[7] Horrocks I, Voronkov A. Reasoning support for expressive ontology languages using a theorem

prover. Proc. of the Fourth International Symposium on Foundations of Information and

Knowledge Systems (FoIKS). Lecture Notes in Computer Science. Springer, 2006, 3861: 201–

218.

[8] Lambek J, Scott PJ. Introduction to Higher Order Categorical Logic. Cambridge University

Press, 1986.

[9] Meseguer J. General logics. Logic Colloquium. North Holland, 1989, 87: 275–329.
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