
Int J Software Informatics, Volume 9, Issue 2 (2015), pp. 153–175 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c⃝2015 by ISCAS. All rights reserved. Tel: +86-10-62661040

Automating Test Case Selection in Model-Based

Software Product Line Development

Alexander Knapp1, Markus Roggenbach2, and Bernd-Holger Schlingloff3

1 (Universität Augsburg, Germany)

2 (Swansea University, Wales, UK)

3 (Humboldt Universität and Fraunhofer FOKUS, Germany)

Abstract We address the problem of how to select test cases for products in a controlled

model-based software product line development process. CVL, the common variability

language, gives a framework for materialisation of product models from a given base

model, variability model and resolution model. From such product models, software

products can be derived. In practise, test case development for the product line often is

independent from the product development. Therefore, the problem arises which test cases

can be applied to which products. In particular, the question is whether a test case for one

specific product can be also used for a “similar” product. In this paper, we show how the

expected outcome of a test case to a product in a model-based software product line

development can be determined. That is, we give a procedure for assigning the outcome of

a given test case on an arbitrary member of a software product line. We recall the relevant

definitions for software product line engineering, describe our approach, and demonstrate it

with the example of a product line of super-automatic espresso machines.

Key words: software product lines; model-based testing; test colouring; UML

Knapp A, Roggenbach M, Schlingloff BH. Automating test case selection in model-

based software product line development. Int J Software Informatics, Vol.9, No.2 (2015):

153–175. http://www.ijsi.org/1673-7288/9/i213.htm

Dedication

To contribute a paper on testing in a special issue dedicated to our academic

mentor and friend Bernd Krieg-Brückner is a great honour. Bernd’s vision and energy

have been and still are an inspiration for us. In Bernd’s research, the topic of formal

methods for software quality has always been a first-class citizen. In the line of

his research on re-use of software design and validation artifacts, we consider here

the question of re-using test cases in the context of software product lines. As former

members and friends of his working group, we very well remember Bernd’s “intelligent

coffee machine”, connected to the internet and equipped with a speech interface.

Thus, it appeared to be more than fitting to use a coffee machine as master example

in this paper.

Corresponding author: Bernd-Holger Schlingloff, Email: hs@informatik.hu-berlin.de
Received 2015-01-11; Revised 2015-04-01; Accepted 2015-04-15.



154 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

1 Introduction

The concept of a software product line originates by the work of D. Parnas[21].

It has gained much attention by the research and consultancy of the Carnegie Mellon

University Software Engineering Institute[6,17]. According to the CMU-SEI definition,

“a software product line (SPL) is a set of software-intensive systems that share a

common, managed set of features satisfying the specific needs of a particular market

segment or mission and that are developed from a common set of core assets in a

prescribed way”[5]. SPLs are abundant in today’s software-intensive systems: most

electronic control units, e.g., in cars or trains, come in multiple variants, as well as

consumer products like coffee machines, dishwashers, mobile phones, etc.

A challenge common to the development of these systems, say, coffee machines,

is that their built-in software is similar, but not identical in all products; there are

slight differences according to the features exhibited by a particular product.

Sources of variability include planned diversity for different user groups, evolution

and enhancement of products, and re-use of modules from one product in another

one. SPL engineering addresses this challenge. The main goal of SPL development

is the strategic re-use of software artifacts. There have been various approaches to

re-use: by copy and paste, macros, subroutines, modules, objects, components and

services. The common problem in all of these approaches is that re-use increases the

probability of errors. Therefore, quality assurance for SPLs is of utmost importance.

In this paper we address the research question of how to automatise test case

selection for the members of a SPL.

A first, naive approach would be to design a test suite specific to each product,

sometimes called “separate test case development” in the literature[23]. However, for

product lines with hundreds of features and zillions of possible products, separate test

case development might not be feasible. Even if the number of actual products for

the market is limited, say, to a few dozens, it might be wasteful, since the individual

test suites for these products will include much overlap. The individual products of a

product line share common features, described in the requirements. All these features

must be properly tested by each of the separate test suites.

A second, more advanced approach re-uses test cases by adapting the test suites

from one product to another. This is called “opportunistic re-use of existing test

cases” in Ref. [23]. Here, the test suite for each individual product is manually

re-worked. The applicability and expected outcome of each test case is defined on an

ad-hoc basis. Clearly, this is a time-consuming and tedious task.

As an improvement, Reuys et al.[23] suggest to “design test cases for reuse”.

Here, variability information about scope and applicability is included in each test

case during the test design. That is, in this approach test cases are by themselves

variant objects. However, this may lead to complex test cases which are difficult to

maintain.

In contrast to these, we suggest to use a single, “universal” test suite for a SPL.

This universal test suite is developed according to usual test design methods and can

be used for all members of the SPL. The universal test suite shall contain tests for

all features. This is similar to model-based SPL development, where the base model

— also called a “150% model”[22] — contains realizations for all features. Given now

a materialisation of the SPL, our idea is to filter the universal test suite in order



Alexander Knapp, et al.: Automating test case selection in model-based... 155

to determine the subset of test cases “applicable” to this materialisation. Clearly

there are syntactic criteria influencing applicability: for example, the system under

test must provide all interfaces (input/output signals) which are used by the test

case. However, applicability also depends on dynamic product features: even if all

necessary interfaces are present in a particular product, a test case might check the

correct functionality of a feature which is not realised in this product. In such a case,

the test case is not applicable, since it is not clear what the expected outcome of this

test case for the respective product should be. With large product lines, determining

which test cases from the universal test suite are applicable for a given product can

be time-consuming. In this paper, we automatise this task by defining an algorithm

for automated test case colouring.

Throughout the paper, we assume that, given a set of requirements, products

are developed in a model-based development process by stepwise refinement, from

an abstract function model to a concrete implementation model. Test cases are

developed independently in another department or business unit, taking the very

same requirements as starting point. This assumption reflects common practice in

large or medium-sized companies, and is mandatory for safety-critical systems

development.

Our contribution is otherwise open to any method of test case development. We

do neither assume nor require that test cases are generated automatically or semi-

automatically from some model; that is, we are not concerned with “model-based

test generation”. The test suite can be obtained in any way. For our example in

Section 3, the test cases given in Section 4 were designed manually, matching the

requirements. However, we presuppose that test development is independent from

product development; in particular, we presume that test cases are not generated

from the product models. It would be unreasonable to (automatically) derive test

cases from the same models from which products are developed; such a procedure

would test the derivation process rather than the product. Thus, we assume that test

cases are designed separately from the models which are used for product development.

Given a product model and a test case, there are several possibilities:

– The test case describes a behaviour which is expected from this particular

product (or product model, respectively). In this case we say that the colour

of the test case with respect to the product model is green.

– The test case describes a behaviour which is not to be expected from this product

model (but maybe from some other product of the product line). In this case,

the colour of the test case w.r.t. the model is red.

– The product model is at an abstract level such that it can not yet be decided

whether the implementation will exhibit the behaviour described by the test

case or not. In other words, there are open design decisions such that one valid

refinement shows the behaviour, whereas another one does not. In this case, we

say that the test case is coloured yellow.

With a finished product, only green and red test cases are executed: Green test cases

confirm that some desired functionality is present, whereas red test cases check that

some undesired functionality is absent in the product.



156 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

In this paper, we formalise these notions and illustrate the ideas with the example

of a product line of super-automatic espresso machines. This work is based on earlier

work on specification-based testing for software product lines, where an algebraic /

process algebraic modelling language was used[11]. Here, we transfer this approach to

UML models which are materialisations of CVL models. This article is a significant

extension of our short paper[12], with a fully worked-out example and a detailed

implementation description.

The rest of this paper is organised as follows. We start by presenting our example

product line in Sect. 2. Then, in Sect. 3, we give an overview of model-based design for

software product-line engineering. Subsequently, in Sect. 4, we describe our approach

to test case colouring. We describe tool support for this test case colouring procedure

by model checking in Sect. 5. In Sect. 6 we elaborate the example and show the

outcome of some simple test cases. We discuss related work in Sect. 7. Finally, in

Sect. 8 we conclude and point at some future work.

2 An Example Product Line

In this section, we present a product line of “super-automatic espresso

machines”. Although this example is hypothetic, it is modelled in the spirit of a real

industrial example. There are various manufacturers of such machines, virtually all

of which organise their portfolio as a product line. Customer prices are ranging from

approximately one hundred to several thousand dollars, with dozens of different

features to choose from.

Basic components of such a machine are the brew group with heating element(s),

water pump, dispensing unit, water tank, bean hopper, grinder, and control unit. For

each of these components there are several design variants. For example, the brew

group can contain one or two heaters, where one heater is a boiler for brewing, and

the optional second is a thermal block used to prepare steam in parallel to the brewing

process. The grinder can be made of metallic or ceramic materials, and it can have a

mechanical or automatic adjustment of grain size. The main purpose of the control

unit is to set the volume of water which the pump presses into the brewing unit.

In automatic espresso machines, this task is usually accomplished by an electronic

control unit and appropriate software.

If a machine contains electronic components, additional functions can be

realised. Similar to other domains, much of the user-visible innovation is

implemented by software. In super-automatic espresso machines, more and more

sophisticated computing hardware and sensors are integrated, which allow fine

control over every aspect of the brewing process. Basic settings include the dosage

of the beans, the grind setting or adjustment, and the volume in the cup. As a user

interface, simple machines have a few fixed-purpose buttons and indicate their state

by a number of LED lights and analog indicators. In contrast, advanced machines

have a monochrome or full-colour LCD display, and user programmable capabilities

for the button settings. For more information on features of automatic coffee

machines, see Ref. [2].

In an industrial systems engineering process, both the system and the test cases

for the system are derived from system requirements. For a product line, there are

generic requirements which should be satisfied by each product, as well as special



Alexander Knapp, et al.: Automating test case selection in model-based... 157

requirements concerning only certain features. Requirements are often written in

natural language and managed in tools like IBM Rational DOORS R⃝ or Polarion R⃝

Requirements. Figure 1 gives some requirements for our example product line of

super-automatic espresso machines.

Figure 1. Super-automatic espresso machines product line: Some requirements

From such requirements, test cases are developed (before, during, or after the

system development). The test cases should reflect the user’s needs and expectations,

and should cover all of the requirements. For our example product line, typical testing

objectives include:

TO-1 Upon pressing of the ‘select/small/large’ button, the machine will

automatically brew coffee.

TO-2 The user presses the ‘select/small/large’ button, and the machine indicates

the start of the brewing process with an appropriate message on the LCD

screen and/or an appropriate pattern of the LEDs, turns on the heater, sets

the grinding level, and turns on the grinder. It then advances to dispensing

the coffee. There are two variants of this test case: If there is enough water

in the tank, the machine pours the coffee; otherwise, it displays a warning and

cancels the brewing process.

TO-3 The user selects a ‘small’ or ‘large’ coffee, and the amount of water dispensed

is according to the regional setting. (This test is only applicable for machines

of the “basic” group.)

TO-4 The user adjusts the water amount two steps by pressing ‘down’ – ‘select’ – ‘up’

– ‘up’ – ‘select’; as an effect, the water amount during dispensing is increased

by 20%. (This test is for all machines which feature programmable cup sizes.)

TO-5 The user adjusts the grinding level two steps by pressing ‘down’ – ‘select’ – ‘up’

– ‘up’ – ‘select’; as an effect, the grinding level during grinding is increased by



158 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

20%. (This test is only for machines which have an adjustable grinder but no

programmable cup size. Note that this is the same user input as before.)

TO-6 The heater is turned on only after the user selected a coffee; i.e., if the user

presses any sequence of buttons except ‘select’, ‘small’ or ‘large’ and the heater

is turned on, then this behaviour is forbidden.

The above list shows that some test cases are applicable to all products, while

some are specific to products possessing certain features.

3 Model-based SPL Engineering

Product line development usually involves two engineering processes: domain

engineering and application engineering. In domain engineering, reusable

components are developed by a domain analysis and domain reference architectures.

In application engineering, customer and market needs serve to generate different

products by instantiating and composing generic artifacts from the domain

engineering process. The instantiation and composition should be largely automatic.

This way, many different products can be generated in an efficient way. There

should be also feedback loops from application engineering to domain engineering,

such that updates from different individual products can be generalised and adapted

to the product line.

Model-based design is a particular form of software development, where a

system model is continuously used as the central artifact throughout the whole

engineering process. Initially, requirements are captured in an abstract model, e.g.,

in SysML, representing the system specification. This abstract model is refined and

transformed into a concrete implementation model, e.g., in UML or Simulink R⃝.

From this implementation model, executable code is generated automatically by a

suitable model compiler.

For model-based SPL engineering, the artifacts produced during domain

engineering are mostly models. However, these models are generic, allowing an

instantiation into different product models. During application engineering, the

product models are refined and compiled as in “ordinary” model-based design.

Figure 2 depicts the model-based domain and application engineering work

flows and their interrelations. The domain engineering process is generic, whereas

the application engineering process exists in several instances, namely one for each

product. Tasks are denoted by rectangles, and the models which are the results of

tasks are given in circles.

We demonstrate the ideas of model-based SPL engineering by elaborating the

example product line of super-automatic espresso machines discussed above,

providing examples for all five types of models (feature model, resolution model,

base model, variability model, and product model) involved. Languages involved are

CVL, the common variability language, a recent attempt to define a syntactic

framework supporting model based SPL engineering[7], and UML for providing the

models.



Alexander Knapp, et al.: Automating test case selection in model-based... 159

Figure 2. Various models in software product line engineering

3.1 Feature and resolution model

A feature (in CVL called a VSpec) is the description of a designated

functionality. Each feature has a unique name and represents one characteristic of a

product which is interesting for some stakeholder, e.g., a special added value for the

customer. The feature model (in CVL called a VSpec Tree) is an explicit description

of commonalities and differences of various products. Feature models are usually

organised as and-or-trees, where each node is marked with the name of a feature.

The root of the feature tree is the name of the product family. Sub-features of a

feature may be marked as optional or mandatory. Additionally, it is allowed to

attach boolean constraints on features to the feature tree. Tools for maintaining

feature trees include pure::variants R⃝, BigLever Gears R⃝, and FeatureIDE[24].

Figure 3. A feature model for super-automatic espresso machines

An example of a feature model is given in Fig. 3. This figure depicts some features

of our above example of super-automatic espresso machines. In this feature model,

it is determined that each machine has a display, a grinder, a heater, and a pump as

mandatory features. The display can consist of a number of LED lights, or an LCD

text display (or both). The pump can be adjusted to serve just the two cup sizes



160 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

‘small’ and ‘large’, or the cup size can be programmable by the user (but not both).

An optional feature is the ability to adjust the grinder in order to influence the taste.

If the feature is selected, there must be a variable grindinglevel which can be set; in

this case an LCD is necessary to display the variable value.

For each feature model, one can construct an equivalent boolean formula with

feature names as propositions, see, e.g., Ref. [1]. In the above example, this formula

is

(saem ⇒ di) ∧ (saem ⇒ gr) ∧ (saem ⇒ he) ∧ (saem ⇒ pu)

∧ (di ⇒ saem) ∧ (gr ⇒ saem) ∧ (he ⇒ saem) ∧ (pu ⇒ saem)

∧ (di ⇒ (led ∨ lcd)) ∧ (led ⇒ di) ∧ (lcd ⇒ di)

∧ (agr ⇒ gr) ∧ (agr ⇒ gl) ∧ (gl ⇒ agr) ∧ (agr ⇒ lcd)

∧ (pu ⇒ (tcs ∧ ¬pcs ∨ pcs ∧ ¬tcs)) ∧ (tcs ⇒ pu) ∧ (pcs ⇒ pu)

Since our feature model involves ten features and different parameters, there is quite

a large number different product models. Only a few of these will be materialised as

actual products in the market.

Given any feature model, a resolution model (or simply resolution) is an

assignment of truth values to feature names, such that the corresponding boolean

formula evaluates to true.1 In our example, two possible resolutions are given in

Fig. 4.

{saem, di, gr, he, pu, led, tcs} 7→ true, {lcd, agr, gl, pcs} 7→ false (1)

{saem, di, gr, he, pu, led, lcd, agr, gl, pcs} 7→ true, {tcs} 7→ false (2)

Figure 4. Two resolution models for the super-automatic espresso machines feature model

3.2 Base model

A base model is an artifact realising the features of the product line. (The base

model model is sometimes called “the 150% model”, a terminology which we refrain to

adopt.) Formally, a base model can be any model which is an instance of some MOF

meta-model. In our work, a base model is a UML model consisting of (restricted) state

machine diagrams, class diagrams and (restricted) OCL formulae. The base model

describes realisations for all features; thus, if the feature model contains conflicting

features, then the base model does not represent a possible product.

Part of the base model for our example product line is given in Fig. 5 (static

structure), Fig. 6 (user interface), and Fig. 7 (control component). Subsequently, we

explain some of the elements relevant for the variability in the product line.

1In propositional logic, such a truth assignment is sometimes called a model of the formula; we use

the CVL terminology here in order to avoid misunderstandings.



Alexander Knapp, et al.: Automating test case selection in model-based... 161

«signal» up
«signal» select

«signal» down
«signal» enjoy
«signal» refillBeans
«signal» refillWater
«signal» small
«signal» large

UserInterface

LED

«signal» off
«signal» on

BREWING : int = 1
ENJOY : int = 2
REFILLBEANS : int = 3

WATERAMOUNT : int = 8
GRINDINGLEVEL : int = 16

display(msg : int)

LCD

REFILLWATER : int = 4

«signal» notEnoughWater
«signal» notEnoughBeans

«signal» enoughWater
«signal» brew
«signal» ground
«signal» heated

Control

setLevel(gl : int)
«signal» on

Grinder

Heater

«signal» on

«signal» open
«signal» close

WaterTank

check(wl : int)

wl : int
gl : int
SMALL : int
LARGE : int

Data

data

1

data

1

0..3

leds

lcd

0..1

ui

1

grinder

1

heater

1
ctrl

1

ctrl

1

waterTank

1
ctrl

1

ctrl

1

Figure 5. Super-automatic espresso machines product line: Static structure

The UserInterface class in the static structure is associated with up to three LEDs
and at most one LCD display. Class Data provides a variable wl for the amount of

water, which is used for brewing one cup. In simple machines, it can be set to the two

constants SMALL and LARGE for the two cup sizes; in more expensive machines, wl
can be adjusted by the user within certain limits. Class Data also provides a variable

gl for the grinding level, which is necessary for machines with an adjustable grinder.

entry / ctrl.brew

Working

AdjustingWaterAmount

entry / lcd.display(lcd.WATERAMOUNT+data.wl)

AdjustingGrindingLevel

entry / lcd.display(lcd.GRINDINGLEVEL+data.gl)
ChangeGrindingLevel

ChangeWaterAmount

lcd.display(lcd.BREWING); leds[1].off; leds[2].off; leds[0].on

small /
leds[1].off; leds[2].off; leds[0].on; data.wl = data.SMALL

large /
leds[1].off; leds[2].off; leds[0].on; data.wl = data.LARGE

lcd.display(lcd.REFILLWATER); leds[0].off; leds[2].on
refillWater /

lcd.display(lcd.REFILLBEANS); leds[0].off; leds[1].on
refillBeans /

lcd.display(lcd.ENJOY); leds[0].off
enjoy /

up [data.wl <= 10] / data.wl++ down [data.wl >= 3] / data.wl−−

up [data.gl <= 5] / data.gl++ down [data.gl >= 1] / data.gl−−

select /

select /

select /

select /

Ready

down /

up /

up /

down /

select /

down /

Group1

up /

TRWB

TRWS

TRWL

Menu

Figure 6. Super-automatic espresso machines product line: User interface

The state machine diagram in Fig. 6 describes the user interface of the espresso

machines. Basically, there are two states: Ready and Working. TRWB, TRWS, and

TRWL are transitions from Ready to Working; they are triggered by pressing the

select button, and, if present, the small or large button. When the brewing is finished,

the machine returns to the ready state with an appropriate message. With some

machines, there is the possibility to use the down and up buttons to access menus



162 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

for adjusting the amount of water for a cup and the grinding level. Note that there

are several possible transitions from Ready triggered by down; the variability model

resolves this apparent non-determinism by selecting the appropriate ones according

to the features materialised in the product model.

CheckWater Checking

SetGrindingLevel

TurnOnGrinder

gnitaeHgnidnirG

TurnOnHeater

/ grinder.
setLevel(data.gl)

/ grinder.on

ground /

/ heater.on

heated /

Brewing

/ ui.enjoy

notEnoughWater /
ui.refillWater

/ waterTank.
check(data.wl)

enoughWater /

Idle

ui.refillBeans
notEnoughBeans /

brew /

Pouring
after(data.wl) /
waterTank.close

Dispensing

entry / waterTank.open

Figure 7. Super-automatic espresso machines product line: Control component

The diagram in Fig. 7 describes the internal control structure of the espresso

machines. Basically, there are three control states: Idle, Brewing and Dispensing.
Within Brewing, there are two parallel regions, for grinding and heating. UML does not

put any restrictions on the interleaving of transitions between these two regions; this

non-determinism is resolved by the programmer, code generator or runtime system.

For the filling level of a cup, this state machine does not contain any variability; the

amount of water is determined by the variable wl, defined in the class diagram in

Fig. 5 and set by the user interface in Fig. 6.

3.3 Variability model

A variability model is a feature tree with variation points linking into the base

model. In CVL, there are several kinds of variation points: object existence, variable

assignment, object substitution, and others.

For our example product line, a variability model is depicted in Fig. 8. It states

that the class LED from the base model is present in a product model if and only if

the feature led is true in the resolution of the feature model. Likewise, if the feature

lcd is true in a resolution, then the class LCD is present in the resolved product model,

otherwise it is absent.

The feature adjustable grinder determines that the variable gl (for the grinding

level) in class Data and the method setLevel in class Grinder are present, as well as the
states ChangeGrindingLevel in the Menu state of UserInterface and SetGrindingLevel in
the Brewing state of Control. Note that CVL leaves it specific to the tool and/or the

base language what cascading effects the removal of a given object has. In our case,

all transitions entering and leaving these two states are also left out when resolving a



Alexander Knapp, et al.: Automating test case selection in model-based... 163

product model where adjustable grinder is false. The feature adjustable grinder has

as mandatory subfeature, the grindinglevel, which initializes the respective variable

in the resolution.

Figure 8. The variability model for the product line

Features two cup sizes and programmable cup sizes are mutually exclusive;

resolving two cup sizes to true gives the constants SMALL and LARGE as well as the

signals small and large which trigger transitions from Ready to Working, whereas

resolving programmable cup sizes to true gives the variable wl and the transition via

select. Additionally, if programmable cup sizes is set to true, then the transitions

down and up from Ready to ChangeGrindingLevel in the Menu state (shown in bold)

must be replaced by transitions leading in and out of the state ChangeWaterAmount.

3.4 Product model

From the variability model for a given base model, for each resolution a product

model can be generated. In CVL, this process is called materialisation. It is done by

applying the variation points according to a given resolution. This means deleting

model elements which are bound to an existence variation point, assigning a value to

a variable bound to a value-assignment variation point, etc. As an example, in Fig. 9

(part of) the product model for the first resolution from Fig. 4 is given. This product

model describes a low-end machine with only two buttons (‘small’ and ‘large’), and

three LEDs (indexed by 0 to 2), which signal brewing, empty bean hopper, and empty

water tank, respectively.

The product models resulting from materialisations are plain UML models with

the usual semantics. In a model-based development process, product models are

further refined to the software for different products.



164 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

small /
leds[1].off; leds[2].off; leds[0].on; data.wl = data.SMALL

large /
leds[1].off; leds[2].off; leds[0].on; data.wl = data.LARGE

leds[0].off; leds[2].on
refillWater /

leds[0].off; leds[1].on
refillBeans /

leds[0].off
enjoy /

entry / ctrl.brew

WorkingReady

Menu

Figure 9. Super-automatic espresso machines product line: User interface for

resolution (1)

4 Colouring Product Line Test Cases

In this section, we show how the product model can be used to determine the

expected outcome of a test case to a product. Our contribution is inspired by our

previous work[11] in the context of the specification language Csp-Casl. The

definition presented here differs as we wanted to cater better for the mechanics of

the UML language. While in the context of Csp-Casl we worked with refusals in

order to deal with internal non-determinism, for testing from UML models we prefer

to speak about enabled and obliged events. Furthermore, the developed technology

is automatised to a higher degree, as it is based upon model checking (rather than

interactive theorem proving).

We use a three-valued colouring scheme to capture what design decisions have

been made in the product model with regards to the product: A test case is coloured

green if it reflects a behaviour that is expected from this particular variant of a SPL. It

is coloured red if the variant should not allow the described behaviour. Finally, a test

case is coloured yellow if the respective behaviour is neither required nor disallowed

by the specification of the variant. This can happen, e.g., if the specification is non-

deterministic or incomplete.

Intuitively, green test cases reflect required and red test cases forbidden

behavioural properties of the specification. Yellow tests mirror open design

decisions, i.e., properties which are not (yet) decided in the specification. Since the

colour of a test case depends on the base model as well as the variability model and

its resolution for a particular variant, the same test case can be green for one

product, but red or yellow for another one.

In order to make these notions more precise, we briefly recall the UML

stipulations on the execution of a model: In UML state machines, a transition e[g]/a

may have a trigger e, can be restricted by a constraint g, and can invoke a behaviour

a. The UML superstructure explains: “A trigger specifies an event that may cause

the execution of an associated behaviour. An event is often ultimately caused by the

execution of an action, but need not be. [. . . ] Upon their occurrence, events are

placed into the input pool of the object where they occurred [. . . ]. An event is

dispatched when it is taken from the input pool and is processed by the classifier.

At this point, the event is considered consumed and referred to as the current



Alexander Knapp, et al.: Automating test case selection in model-based... 165

event.”[19, p. 471sq.]. The constraint language is not specified in UML; “a constraint

is a condition or restriction expressed in natural language text or in a machine

readable language for the purpose of declaring some of the semantics of an

element”[19, p. 57]. A behaviour is a consequence of the execution of an action by

some related object. The behaviour invoked as the effect of a transition may contain

several actions, e.g., calling an operation, changing variable values, or causing the

occurrence of some event.

To define the notion of a test case, we fix a test signature Σ. In our approach,

we assume that Σ is a subset of the occurrences and dispatches of events which are

contained in the product model. In this case, we say that the test case is applicable

to the product model.

Additionally, we require that stimuli can be sent to the SUT, for example pressing

the button small, from the outside. We represent this as the artificial entity tester.

Intuitively, elements of the signature are the only events which can be “noticed” by the

test case; events not in the signature are “invisible”. A test case is a finite sequence

of elements from the test signature Σ.

Example 1. Consider the product model for resolution (1), see Fig. 9 for its

user interface and Fig. 10 for its initial configuration.

: LED

: LED

: LED

: Data

ui

leds[2]

leds[1]

leds[0]

: UserInterface

data data

ctrl

ctrl

ctrl

waterTank

heater

grinder
: Grinder

: Heater

: WaterTank

: Control
ctrl

Figure 10. Super-automatic espresso machines product line: Initial configuration for

resolution (1)

For testing an implementation against this product model, one could for instance

choose the signature

Σsmall = {occ(tester, small, ui), disp(tester, small, ui),
occ(ui, on, leds[0]), occ(ui, brew, ctrl),
disp(ctrl, enjoy, ui), disp(ctrl, refillBeans, ui)} .

Here, occ and disp indicate event occurrences and event dispatches, respectively.

Event occurrences and dispatches have a sender and a receiver. For instance,

occ(tester, small, ui) stands for the occurrence of small, sent by the tester to the user

interface object ui, and disp(tester, small, ui) stands for the dispatch of this event by

the interface object ui.

Σsmall allows, e.g., to check if the choice of a small cup leads to turning on an

LED as well as starting the brewing process. This expectation can be expressed by

the test case

T1 = ⟨occ(tester, small, ui), disp(tester, small, ui),
occ(ui, on, leds[0]), occ(ui, brew, ctrl)⟩ .



166 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

In order to fix the colour of a test case, we assume that there exists a function

enabled assigning to each configuration of a UML model the set of elements from Σ

which may occur next. That is, an event e ∈ Σ is in enabled(c), if upon its occurrence

there is a sequence c0
e1−→ c1

e2−→ · · · en−→ cn of transitions such that c0 = c and en = e,

and for all i < n it holds that ei /∈ Σ. In this case, we say that cn is reached from c

by e. For an event e ∈ enabled(c), we say that it is obliged at c, if it is not the case

that some e′ ∈ Σ different from e is enabled in c. Intuitively, if e is obliged at c, it is

the event from Σ which must occur next, if any.

Since UML contains semantic variation points, the function enabled is

tool-dependent. In particular, UML does not impose an ordering on events in the

event pool; furthermore, the mechanism for determining the behaviour to be invoked

as a result of a call operation is unspecified, and it is a semantic variation point

whether one or more behaviours are triggered when an event satisfies multiple

triggers. The UML allows an event to be dispatched in a configuration even if there

is no transition taking this event as a trigger; in such a situation, this event is

discarded.

The colour of a test case T = ⟨e1, . . . , en⟩ in the signature Σ with respect to a

product model is a value from {green, red, yellow}, such that

– colour(T ) = green iff for all k < n and every sequence ⟨c0, c1, . . . , ck⟩ of

configurations such that c0 is an initial configuration, and ci is reached from

ci−1 by ei for all 1 6 i 6 k it holds that ek+1 is obliged at ck;

– colour(T ) = red if there is no sequence ⟨c0, c1, . . . , cn⟩ of configurations such

that c0 is an initial configuration, and ci is reached from ci−1 by ei for all

1 6 i 6 n; and

– colour(T ) = yellow, otherwise.

In other words, a test case is green if it can be observed in all possible executions of

the model triggered by this test case. It is red if there is no possible execution where

it can be observed. It is yellow if some executions show the behaviour and others do

not.

Note that our definition enforces that for each test case T = ⟨e1, . . . , en⟩ for which
colour(T ) = green there is at least one sequence ⟨c0, c1, . . . , cn⟩ such that c0 is an

initial configuration, and for all 1 6 i 6 n, configuration ci is reached from ci−1 by

ei. That is, green test cases must indeed be observable in the system’s executions.

Example 2. Consider the product model for resolution (1). We claim that

test case T1 w.r.t. signature Σsmall, see Ex. 1, has the colour green.

Initially, the tester presses the button small. The user interface in Fig. 9 shows the

transition TRWS labelled small / leds[1].off; leds[2].off; leds[0].on; data.wl = data.SMALL.
This mirrors the dispatch of small and the occurrence of on in test case T1. The

events for turning off LED 1 and LED 2 as well as setting the water level to SMALL
are ignored as they are not part of Σsmall. Upon entry of state Working, brew occurs.

There are several configuration sequences matching this test case. For instance,

the order in which LED 1 and LED 2 dispatch off has not been specified. In a

concurrent system, they may happen in any order. However, for all these sequences it

holds that if the next event is from the test signature, then it is the only one from the



Alexander Knapp, et al.: Automating test case selection in model-based... 167

test signature, i.e., the event is obliged. For instance, in an initial configuration, no

event can be dispatched as all event queues are empty. All coffee machine components

start with an event dispatch, thus the only component able to act is the tester. The

tester starts by choosing a small coffee.
An important safety property of espresso machines is that they never start

brewing coffee without tester interaction, see test objective TO-6 from Sect. 2. A

test case for this property should obtain the colour red.

Example 3. To encode this test objective for the product model for

resolution (1), we define the signature

ΣnoSelfActivation = {occ(tester, small, ui), occ(tester, large, ui), occ(ui, brew, ctrl)} .

We can observe the possible tester inputs to the machine and the start of the brewing

process. We claim that with this signature the test case

T2 = ⟨occ(ui, brew, ctrl)⟩

obtains the colour red. We argue again that in the initial configuration, no event can

be dispatched as all event queues are empty, all coffee machine components start with

an event dispatch, and in T2 the tester does not act.

Sometimes, the colouring of test cases might yield “surprising results”. One

would hope, for instance, that choosing a cup of coffee always results in obtaining a

coffee. However, as daily experience tells, this is not always the case: there might not

be enough coffee beans, or the water tank might be empty. Such possible behaviour,

which however won’t necessarily happen, should be coloured yellow:

Example 4. To encode the test objective “choosing a cup of coffee results in

obtaining a coffee” for the product model for resolution (1), we define the signature

ΣdailyExperience = {occ(tester, small, ui), disp(ctrl, enjoy, ui)} .

We can observe one possible tester input and the controller signalling that the brewing

process was successful. We claim that with this signature test case

T3 = ⟨occ(tester, small, ui), disp(ctrl, enjoy, ui)⟩

obtains the colour yellow.

While we actually find configuration sequences in which small and disp are enabled

(thus, this test case is not red), it is not the case that after reaching a configuration

with small we will reach a configuration with disp(ctrl, enjoy, ui). For instance, after

taking the transition labelled with brew / in the control component, see Fig. 7, it is

possible to follow the transition labelled with notEnoughBeans / ui.refillBeans and the

event occ(ctrl, enjoy, ui) will never happen (thus, this test case is not green).

Here are some simple properties of our colouring.

– An empty test case (consisting of no events at all) is always green.

– A one-element test case is green if its event is enabled and obliged in all initial

configurations; it is red, if the event is initially not enabled; and yellow, if it is

enabled in some initial configuration but not obliged.



168 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

– Any initial fragment of a green test case is green; any extension of a red test

case is red.

– If a state is non-deterministic, e.g., from state s there are transitions /a and /b,

then the test cases ⟨a⟩ and ⟨b⟩ are yellow, since enabled(s) = {a, b}, but a is

not obliged at s. Assuming that the test signature is {a, b, c}, the test case ⟨c⟩
is red, since neither /a nor /b produce c and thus c is not enabled in s.

– Consider a situation where the effect of a transition invokes a behaviour

expression including an operation for which only its signature is known (e.g., a

transition /obj.op(arg), where the operation op is declared in the class

diagram, but the return value of op for a given argument arg is not specified).

Then test cases using such a transition will be yellow, as all possible return

values are enabled in the state machine; however, the test case contains only a

specific one.

The test verdict (pass or fail) for a test is assigned by executing a green or red test

case with a concrete product. A product passes a test suite, if it behaves as expected,

i.e., if it exhibits the behaviour described in all green test cases and deviates from the

behaviour described in all red test cases. Yellow test cases do not contribute to the

detection of faults, thus we do not execute them.

Figure 11. Structure of testing automata

5 Automated Test Colouring via Model Checking

For automating the above defined test colouring procedure for a given

materialisation of a SPL and a test case, we use the tool Hugo/RT, which is a

UML model translator for model checking[13]. In particular, Hugo/RT resolves the

UML’s semantic variation points mentioned above in a particular way thus also

fixing the enabled function: The event pool is implemented as bounded event

queues; since inheritance is not supported, the dispatching algorithm becomes

straightforward, as no overloading has to be considered; only a single,

non-deterministically chosen behaviour can be triggered by a given event; and events

which trigger no outgoing transition in a state configuration are silently consumed.

Hugo/RT translates both the materialisation and a test case over a test

signature into Promela, which is the input language of the model checker SPIN[10];

syntactically, it is first ensured that the test signature indeed is a subset of the

possible event occurrences and dispatches of the materialisation. The resulting

encoded product model shows instrumentation for observing all events: Whenever

an event occurs or is dispatched in the product model, a notification is sent out

which can be used by an observer. The test case results in an automaton process



Alexander Knapp, et al.: Automating test case selection in model-based... 169

sending those events to the system which occur at the tester and also reacting to

those produced by the system: If an event of the test case is observed, the test case

automaton proceeds; if any other event which is part of the test signature happens,

the automaton goes to a dedicated failure state; events not present in the test

signature are ignored. After successful observation of the last entry of the test case

sequence the automaton enters a dedicated final state.

The structure of such a testing automaton is shown in Fig. 11 using the test

sequence ⟨e1, e2, e3, e4⟩ over the test signature Σ as an example, where e1 originates

with the artificial tester (indicated by a !) and e2, e3, and e4 are produced by the

system product model (indicated by a ?) and thus have to be observed. Σ denotes

the unobservable events outside the test signature. The accepting final state is shown

as a double-outlined circle labelled A, the failure state as a circled F.

Using SPIN, we now check on the one hand whether the testing automaton can

proceed to its final state which is reached when the last event of the test case has

happened. If this final state cannot be reached, the test case is coloured red. On

the other hand, if the final state is reachable, we additionally check whether the

dedicated failure state is reachable. If the failure state cannot be reached, the test

case is coloured green, otherwise yellow.

Technically, the testing automaton is notified by the system, i.e., the encoded

product model instrumented for observation, of event occurrences and event

dispatches by

observer!SEND ,sender ,receiver ,behavioral ,arguments
observer!RECEIVE ,sender ,receiver ,behavioral ,arguments

where behavioral denotes either a signal or an operation. The testing automaton

raises an event occurrence by

event_queues[receiver ]!signal/operation,empty ,arguments

where empty represents an unknown sender, i.e., the testing automaton as originator.

The failure state is implemented as an assert(false), since assertion violations can

be checked conveniently in SPIN. The final state is represented by a cycle through

a statement labelled acceptAll because SPIN offers special support for checking

for such “acceptance cycles”. However, SPIN does not offer support for real-time (as

used for exiting Pouring in Fig. 7); Hugo/RT also provides a translation of UML state

machine systems into the real-time model checker UPPAAL[25], but we currently have

not included a translation of the test cases to UPPAAL.

Example 5. Let us consider the test case

T1 = ⟨occ(tester, small, ui), disp(tester, small, ui),
occ(ui, on, leds[0]), occ(ui, brew, ctrl)⟩

for the test signature Σsmall of Ex. 1. This test case structurally conforms to the

example shown in Fig. 11.

The Promela-representation of this test case produced by Hugo/RT takes the

following form:

1 proctype Tester() {
bit direction; byte sender; int behavioral; byte receiver;
int arguments[1];
nc t 1:



170 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

5 event queues[obj ui−1]!send small,empty,empty;
nc t 2:
observer?direction,sender,receiver,behavioral,arguments[0];
if
:: behavioral == send off −> goto nc t 2

10 :: ... /∗ analogously for all other events that are not considered ∗/
:: direction == RECEIVE && sender == empty && behavioral == send small

&& receiver == obj ui −> goto nc t 3
:: else −> assert(false)
fi;
nc t 3:

15 observer?direction,sender,receiver,behavioral,arguments[0];
if
:: behavioral == send off −> goto nc t 3
:: ... /∗ analogously for all other events that are not considered ∗/
:: direction == SEND && sender == obj I && behavioral == send on &&

receiver == obj led0 −> goto nc t 4
20 :: else −> assert(false)

fi;
nc t 4:
observer?direction,sender,receiver,behavioral,arguments[0];
if

25 :: behavioral == send off −> goto nc t 4
:: ... /∗ analogously for all other events that are not considered ∗/
:: direction == SEND && sender == obj ui && behavioral == send brew &&

receiver == obj ctrl −> goto acceptAll
:: else −> assert(false)
fi;

30 acceptAll:
if
:: 0 == 0 −> goto acceptAll
fi

}

In each step, delimited by the labels nc_t_x, one event is either generated or

checked for occurrence; for instance, in nc_t_1 the sending of small from tester to ui

is generated. All messages which are not under consideration are ignored; see, e.g.,

lines 9 and 10. If a message occurs which is neither ignored nor is the event we are

waiting for, an assertion violation is raised. Finally, in acceptAll, we have passed

through all desired events successfully, and an infinite loop is entered which can be

detected by using SPIN’s check for “acceptance cycles” (indicated by the label’s name

acceptAll starting with accept).

First, SPIN reports that an acceptance cycle is reachable; this check is

instantaneous on a Intel R⃝ Core 2 Quad CPU with 2.33GHz and 4GB RAM. Then

SPIN reports that no assertion violation can be reached, this time taking 3.15 s.

Thus, this test case is indeed coloured green.

6 Colouring Example Test Cases

We now discuss the colouring of some test cases w.r.t. to different materialisations

of the variability model. We first give a universal test suite, discuss the syntactic

applicability of its test cases to product models, and finally present their colouring.

6.1 A universal test suite

A universal test suite addressing the six testing testing objectives TO-1 to TO-6

stated in Sect. 2 could consist of the following test cases:



Alexander Knapp, et al.: Automating test case selection in model-based... 171

Concerning TO-1:

TC-1small = ⟨occ(tester, small, ui), disp(tester, small, ui), occ(ui, brew, ctrl)⟩
TC-1large = ⟨occ(tester, large, ui), disp(tester, large, ui), occ(ui, brew, ctrl)⟩
TC-1select = ⟨occ(tester, select, ui), disp(tester, select, ui), occ(ui, brew, ctrl)⟩

Concerning TO-2:

TC-2enoughWater = ⟨occ(tester, small, ui), disp(tester, small, ui), occ(ui, off, leds[1]),
occ(ui, off, leds[2]), occ(ui, on, leds[0]), occ(ctrl, on, heater),
occ(ctrl, setLevel(data.gl), grinder), occ(ctrl, on, grinder),
disp(ctrl, enoughwater, waterTank), occ(ctrl, enjoy, ui)⟩

TC-2notEnoughWater = ⟨occ(tester, small, ui), disp(tester, small, ui), occ(ui, off, leds[1]),
occ(ui, off, leds[2]), occ(ui, on, leds[0]), occ(ctrl, on, heater),
occ(ctrl, setLevel(data.gl), grinder), occ(ctrl, on, grinder),
disp(ctrl, notEnoughWater, waterTank), occ(ctrl, refillWater, ui)⟩

Concerning TO-3:

TC-3small = ⟨occ(tester, small, ui), occ(ctrl, check(15), waterTank)⟩
TC-3large = ⟨occ(tester, large, ui), occ(ctrl, check(27), waterTank)⟩

Concerning TO-4:

TC-4 = ⟨occ(tester, down, ui), occ(tester, select, ui), occ(tester, up, ui),
occ(tester, up, ui), occ(tester, select, ui), occ(waterTank, check(7), ctrl)⟩

Concerning TO-5:

TC-5 = ⟨occ(tester, down, ui), occ(tester, select, ui), occ(tester, up, ui),
occ(tester, up, ui), occ(tester, select, ui), occ(ctrl, setLevel(7), grinder)⟩

Concerning TO-6:

TC-6 = T2 = ⟨occ(ui, brew, ctrl)⟩

w.r.t.

ΣnoSelfActivation = {occ(tester, small, ui), occ(tester, large, ui), occ(ui, brew, ctrl)}.
In TC-1 to TC-5, the test signature is identical to the events in the test cases.

Naturally, more test cases can be added to the universal test suite in order to realise

the testing objectives.

6.2 Applicability of test cases to product models

A test case is applicable to a product model if its test signature – up to the

stimuli sent by the tester – are occurrences and dispatches of events contained in

the model. Thus, we obtain for the product model for resolution (1) that TC-1small

and TC-1large are applicable, while TC-1select is not applicable. For the product

model for resolution (2), the result is the opposite: TC-1small and TC-1large are

not applicable, while TC-1select is applicable. In the following, we will discuss the

colouring of applicable test cases only.



172 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

6.3 Colouring of test cases

In the following we discuss for each of the above test cases how their colour

depends on the selected features and other properties of the product model.

Required behaviour: If applicable to a product model, TC-1small, TC-1large, and

TC-1select are coloured green. Example 2 provides an argument that can easily be

adjusted to suit these test cases.

Non-determinism in a model: The test cases TC-2enoughWater and

TC-2notEnoughWater are coloured yellow in all applicable product models. The reason

is that the base model contains some elements of abstraction, leaving room for

different implementations. In the example of our test cases, the interleaving of

different actions in the two parallel regions of state Brewing in the Control

Component, see Fig. 7, is not fixed; this is determined, e.g., by the programmer or

automated code generator. Should the model be refined to a deterministic one such

that, e.g., turning on the heater happens before adjusting the grinding level and

turning on the grinder, and additionally the signals enoughWater, notEnoughWater are
made predictable in the model, then these test cases should become green or red.

This shows that refinement can turn a yellow test case into a red or a green one.

Underspecification of data: TC-3small and TC-3large are both yellow, as the

regional value settings of Data.SMALL and Data.LARGE are not defined in the UML

model. In a resolution where these constants are assigned to the values 15 and 27,

respectively, these test cases are green.

Colour of test case depends on feature selection: TC-4 and TC-5 are

applicable only if a select button is available. Similar to the previous discussion of

underspecification of data, TC-4 is coloured yellow, since data.wl is not initialised. If
the feature adjustable grinder is present, the value of data.gl is initialised with the

value 5. Assuming data.wl has the value 5 initially, we can see the following effect

w.r.t. different resolutions:

– TC-4 is green in case the feature programmable cup-size is present, however, it

is red in case this feature is absent.

– TC-5 is green in case the feature adjustable grinder is present and the feature

programmable cup-size is absent, however it is red if both these features are

present.

Safety: TC-6 illustrates how to encode a safety property as a negative test case. It

has been discussed in Ex. 3.

7 Related Work

Testing is an important topic in the software product line literature. Systematic

reviews can be found in Refs. [9,16,14]. These surveys show that most of the work on

SPL testing is concerned with the question of selecting products for testing. That is,



Alexander Knapp, et al.: Automating test case selection in model-based... 173

the authors want to identify a representative set P of products such that the quality of

the base model can be assured by testing (only) the products in P . Strategies include

selecting products with minimal and maximal features, pair-wise testing, incremental

or regression-based SPL testing, etc. In particular, Mota deals with maintaining

correctness of the base model after modifications[18]. Baller et al. focus on heuristics

for minimization of the test suite for the base model[4].

Also the problem of re-using SPL test cases for the testing of different products

has been considered before. In Ref. [23] the authors suggest to tackle the problem

by “preserving variability throughout generic test artifacts in domain engineering,

and by reusing these generic test artifacts in application engineering to derive

product-specific test case scenarios”. This approach requires that the development

of test cases is lifted from the application level, where it is common practice, to the

domain engineering level. Furthermore, we see the test development as an

independent competitive process, which leads to test suites out of which test cases

are selected according to the specific product needs.

Oster[20] uses a combinatorial strategy for combining features to form a

representative set of products. Test cases are then generated automatically from a

reusable test model. The main focus of this approach is on the selection of

resolution models such that the selected set of product models gives a feasible

survey of the product line. For our approach, we are not concerned with the

modelling of features and resolutions. However, the representative set of products

could serve as a basis for an initial colouring of test cases.

In Ref. [15], the authors propose to construct test artifacts incrementally for

every product variant by explicitly considering commonality and variability between

two consecutive products under test. This approach is closely related to our work;

however, we use a three-valued test evaluation scheme. Moreover, their paper uses

a dedicated test model, whereas in our work test cases are evaluated with the base

model and variability models.

Bertillon et al.[3] use a notation based on natural language descriptions of

requirements to define test cases for product lines. The resulting test specification is

generic in the product, and a set of relevant test scenarios for a customer specific

application can be derived from it. This work complements our colouring method,

since we assume that the test suite is designed separately.

8 Conclusions and Future Work

We have presented a theory and prototypical implementation for test case

assessment in the model-based development of multi-variant systems. To our

knowledge, this is the first treatment of the subject in the context of UML-based

software development.

We deal with both positive (green) and negative (red) test cases, and introduce

a third colour (yellow) for test cases whose outcome is not determined with a given

product model. This means that it is needless to execute them with products based

on this model. Our approach thus allows to assess and select those test cases from a

universal test suite which are relevant for a given product. It would be a

straightforward extension to define the notion of a “partial resolution” of a base

model which yields a set of product models as materialisation. Additionally, lifting



174 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

our approach to logical, abstract test specifications in the universal test suite would

be of interest. This would have to include different colourings for the different

concretisations. For conciseness, we did not pursue these extensions further.

Our theory is well-suited for testing deterministic reactive systems under test,

where the response functionally depends on the provided stimuli. In the UML

specification, it can deal with indeterminacy caused by semantic variation points

and nondeterminism by under-specification and open design decisions, by assigning

the respective test cases the colour yellow. The theory excludes to formulate test

cases for systems which are inherently non-deterministic. This can be the case, e.g.,

for a network of cooperating devices with unpredictable message delays. To deal

with such a situation, we are investigating trees and UML interactions as test cases

and the relation to the testing theory of de Nicola and Hennessy[8].

Our future plans include to apply the theory to actual industrial problems in

safety-critical systems. We are looking at case studies of train control systems and

flexible automation modules for engine test beds. To this end, we have to extend

our current prototypical implementation such that all steps are fully automatic.

Furthermore, all steps in the tool chain, including the model transformation from

UML into Promela, need to be certifiable. Therefore, we are looking at verification

techniques for model transformation tools in order to allow the use of UML also in

safety-critical systems development.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful suggestions

and comments. Furthermore, we thank Erwin R. Catesbeiana (Jr.) for describing

inconsistent features of super-automatic espresso machines in the brightest green.

References

[1] Apel S, Batory D, Kästner C, Saak Ge. Feature-Oriented Software Product Lines: Concepts

and Implementation. Springer, 2013.

[2] http://www.wholelattelove.com/articles/automatic_espresso_machines.cfm. 2015-01-11.

[3] Antonia Bertolino and Stefania Gnesi. Use case-based testing of product lines. Proc.

ESEC/FSE 2003. ACM. 2003. 8. 355–35.

[4] Baller H, Lity S, Lochau M, Schaefer I. Multi-objective test suite optimization for incremental

product family testing. Proc. ICST 2014. 2014. 303–312.

[5] CMU Software Engineering Institute: Product Line Web Page. http://www.sei.cmu.edu/

productlines/. 2015-01-11.

[6] Clements P, Northrop L. Software Product Lines: Practices and Patterns. Addison-Wesley,

2001.

[7] CVL Revised Submission. http://www.omgwiki.org/variability/doku.php. 2015-01-11.

[8] de Nicola R, Hennessy M. Testing equivalences for processes. Theo. Comp. Sci., 1984, 34:

83–133.

[9] Engström E, Runeson P. Software product line testing — a systematic mapping study. Inf.

Softw. Techn.3, 2011, 53(1): 2–1.

[10] Holzmann GJ. The SPIN Model Checker. Addison-Wesley, 2003.

[11] Kahsai T, Roggenbach M, Schlingloff B-H. Specification-based testing for software product lines.

Proc. SEFM 2008. IEEE. 2008. 149–159.

[12] Knapp A, Roggenbach M, Schlingloff B-H. On the use of test cases in model-based software

product line development. Proc. SPLC 2014. ACM. 2014. 247–251.

[13] Knapp A, Wuttke J. Model checking of UML 2.0 interactions. Proc. MoDELS 2006 Wsh.s.



Alexander Knapp, et al.: Automating test case selection in model-based... 175

Springer. 2007. LNCS 4364. 42–51.

[14] Pérez Lamancha B, Polo Mi, Piattini M. Systematic review on software product line testing.

Comm. Comp. Inf. Sci., 2013, 170: 58–71.

[15] Lochau M, Schaefer I, Kamischke J, Lity S. Incremental model-based testing of delta-oriented

software product lines. Proc. TAP 2012. Springer. 2012. LNCS 7305. 67–82.

[16] Mota Silveira Neto PA da, Carmo Machado I do, McGregor JD, Almeida ES de, Lemos Meira

SR de. A systematic mapping study of software product lines testing. Inf. Softw. Techn., 2011,

53(5): 407–423.

[17] McGregor JD, Northrop LM, Jarrad S, Pohl K. Initiating software product lines. IEEE Softw.,

2002, 19(4): 24–27.

[18] Mota Silveira Neto PA da. A Regression Testing Approach for Software Product Lines

Architectures: Selecting an Effcient and Effective Set of Test Cases. [MSc thesis],

Universidade Federal de Pernambuco. Lambert Academic Publishing, 2010.

[19] Object Management Group. Unified Modeling Language Superstructure. Version 2.4.1.

Specification, OMG, 2011. http://www.omg.org/spec/UML/.

[20] Oster S. Feature Model-based Software Product Line Testing[PhD thesis]. Technische

Universität Darmstadt, 2012.

[21] Parnas DL. On the design and development of program families. IEEE Trans. Softw. Eng.,

1976, 2(1): 1–9.

[22] Pohl K, Böckle G, van der Linden FJ. Software product line engineering: foundations, principles

and techniques. Springer, 2005.

[23] Reuys A, Reis S, Kamsties E, Pohl K. The ScenTED method for testing software product lines.

Software Product Lines. Springer. 2006. 479–520.

[24] Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich T. FeatureIDE: An Extensible

Framework for Feature-oriented Software Development. Sci. Comp. Prog., 2014, 79: 70–85.

[25] http://www.uppaal.org. 2015-01-11.


