
Int J Software Informatics, Volume 9, Issue 2 (2015), pp. 205–231 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c⃝2015 by ISCAS. All rights reserved. Tel: +86-10-62661040

Knorc Calculus and Its Formal Semantics

— To Honor my Friend Prof. Krieg-Brueckner’s 66th Birthday

Ruqian Lu

(Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China)

(Key Lab of Management, Decision and Information Systems, Chinese Academy of Sciences,

Beijing 100190, China)

(Sino-Australian Joint Lab of Quantum Computing and Quantum Information Processing, Beijing,

China)

Abstract This paper introduces the orchestration calculus Knorc, which is a conservative

extension of the Orc calculus designed by J. Misra et. al. Orc is a simple but powerful

calculus for wide area computing, whose simplicity makes it a solid kernel for orchestration

programming. But on the other hand Orc leaves everything else to the programmer, which

often makes the programming task complicated. The design idea of Knorc was to provide

Orc with a delicately selected set of facilities to greatly increase the expressive power of

the calculus and at the same time keep the calculus concise. The distinguished features of

Knorc include, but not limited to: combination of process algebra and logic programming,

site considered as remote Boolean procedure, Horn-like logic programming and inference,

diversity of different parallelism mechanisms, network of abstract knowledge sources, open

world assumption as opposed to closed world assumption where OWA means existing sites

need not be known to the programmer, symmetric process-to-process communication, batch

processing facilities of knowledge and data, as well as broad band message transmission.

Besides introducing the general structures of the language Knorc, we present also a

formal structural operational semantics. This is one of the major foci of this paper.

Key words: orchestration; process algebra; logic programming; formal semantics; Orc

language; Knorc language

Lu RQ. Knorc calculus and its formal semantics – to honor my friend Prof.

Krieg-Brueckner’s 66th birthday. Int J Software Informatics, Vol.9, No.2 (2015):

205–231. http://www.ijsi.org/1673-7288/9/i215.htm

1 Background and A Quick Overview of Orc

There were two major driving forces which made the orchestration technique

popular, namely business information processing and Web service engineering.

Various concepts of orchestration under different names have been proposed, such as

computation orchestration, service orchestration, business orchestration, cloud

orchestration, etc. Accordingly, different programming languages have been

This work is sponsored by CNSF key project 61232015.
Corresponding author: Ruqian Lu, Email: rqlu@math.ac.cn
Received 2015-01-06; Revised 2015-04-01; Accepted 2015-04-30.

206 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

designed for programming orchestration, which are in particular suitable for

programming concurrent and distributed applications. While most of the early

orchestration languages are based on XML representation[25], it was only after

entering the 21st century that people have started to design orchestration languages

in higher level form. The Orc calculus designed by Misra et al. is one of the most

successful languages in this area[16], which is now well-known for its simple but

powerful character. By disregarding technical details of programming and focusing

on Web resource orchestration, Orc attracts interest of many researchers.

The development of Orc has experienced three major stages. That Orc first

published in 2002 by Young-ri Choi et al[5] was basically a programming model for

task orchestration, where the basic program units are tasks. But many fundamental

principles like wide area computation, remote task call, restricted communication,

tree concurrency have been decided in that version. It was J. Misra who has led

Orc into its second stage: Orc as a programming calculus (2004) taking a more

elegant form of process algebra[15]. In this version the tasks were renamed as sites

to emphasize their original motivation as abstraction of Web services. The calculus

is simple but still very powerful with a group of salient features regarding real time

asynchronous concurrency making it different from traditional process algebras such

as CSP, CCS, ACS and π calculus. However, Orc as a calculus lacks conventional

computational features, even elementary actions such as addition and multiplication

should be done by site calls. The third stage (2006) was opened by D. Kitchen et al,

who have developed Orc as a functional language and made it to a real programming

language[12].

As pointed out by its authors, the power of Orc is in its computation model as

a calculus for wide area computing or wide area orchestration. An Orc program is

conceived as one of orchestrating Web services where each Web service is abstracted

as a site. To call a Web service is considered as calling the service of a site, written as

M(p̄), where M is the site name and p̄ is a list of parameters. A site call is effective

only when all its parameters are instantiated. Otherwise the call will be pending.

Site call is the fundamental program unit of Orc. Expressions are site calls connected

by combinators. To make the language as simple as possible, Orc has only three

combinators: parallel composition f | g; sequenced computation f >x> g, where

x is published by f and sent to initiate g; backwards computation f <x< g | h,
also written as f where x :∈ g | h, where f , g and h are called in parallel, x is

published by either g or h and sent to instantiate pending parameters of f , which

terminates g | h and prunes it away from the whole expression. In addition, recursive

definitions are allowed to increase the programming power. It is natural that in Orc

the communication is thought of as asynchronous message passing.

The basic grammar of Orc is simple and concise as shown in table 1[16].

Table 1 Basic grammar of orc

f, g, h ∈ Expression ::= M(p̄) ∥ E(p̄) ∥ f >x> g ∥ f | g ∥ f where x :∈ g

p ∈ Actual ::= x ∥ v

Definition ::= E(x̄) ∆ f

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 207

So the entities of an Orc program are at three levels: the data level: variables,

values, parameters; the site call level and the expression level (sites structured with

combinators), where the site level is the most fundamental one. There are no

arithmetic neither Boolean expressions. As for semantics, the most well established

formal semantics of Orc is its asynchronous semantics which is operational and

structured. In the following we list some most interesting transition rules and

explain them shortly[11]

1.1 Semantics for site call

k fresh

M(v)
Mk(v)−−−−→?k

?k
k?v−−→ let(v) let(v)

!v−→ 0 (1)

Each site call M(v) sets up a fresh handle k, a specific call instance Mk(v) and

transits to ?k. Once the response arrives, it receives the value v with the event k?v

and transits to let(v). The later v publishes the value v with event !v and transits to

the zero site 0 (unable to do anything).

1.2 Semantics for forwards value transmission

f
!v−→ f ′

f >x> g
τ−→ f ′ >x> g | g [v/x]

(2)

Expression f publishes a value v to become f ′ and sends it via channel >x> to

instantiate expression g’s variable x. The result is a parallel composition of

instantiated g with f ′ >x> g.

1.3 Semantics for backwards value transmission

g
!v−→ g′

f where x :∈ g
τ−→ f [v/x]

(3)

Expression g publishes value v and sends it back via the where channel to

instantiate expression f ’s variable x. As a consequence, expression g together with

the where structure disappear.

2 Works Related to Orc

The first echo to the publication of the Orc language might be the wave of

studying its semantics, which started almost immediately. The operational semantics

mentioned in the above section was provided by David Kitchen et al. and is in fact a

trace semantics for Orc. As usual, they extended the Orc execution traces to include

failures, refusals, ready states etc. In addition, the traces include also communication

and substitution events. It was proved that this Orc’s trace semantics is equivalent

to its observational semantics. Furthermore, they showed that the equality relation

of trace sets is actually a congruence on programs. A more general congruence is also

given which is more delicate than strong bisimulation.

Another operational semantics proposed for Orc is Tony Hoare’s dynamic labelled

tree semantics[9]. The name tree semantics comes from the fact that the execution

208 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

traces of an Orc program are sets of threads dynamically created and pruned along a

labelled tree. The equivalence of two Orc programs is defined by the equality of their

corresponding labelled trees. In his paper, Tony Hoare proved a series of algebraic

laws of this semantics which can be used to design Orc compilers and to analyze Orc

programs’ properties as well as proving their correctness.

Rewriting logic semantics was studied by Marti-Oriet, Jose Meseguer and Rosu

since the nineties of the last century as an executable rewriting logic theory[14], which

is a wide spectrum approach that can be used to describe formal semantics of a system

covering its design, implementation and analysis phases. M. AlTurki and J. Meseguer

applied Maude, which is a system specification language implementing rewriting logic

semantics, to define a rewrite logic semantics for Orc[1] resulting in both a structured

operational semantics and a reduction semantics. The authors called this technique

DIST-ORC[3].

This paper is perhaps not the right place to list all approaches proposed to study

the formal semantics of Orc. Rather, we will use a few lines to mention the further

developments of Orc in its generalization or specialization.

While bearing its key concern in distributed orchestration of Web services, the

original Orc does not provide much facility on data models and data processing.

Kristi Morton, B.A. proposed an XML based data model for Orc in his master of art

thesis and developed an extension of Orc called Orc-X which combines

Orchestration with XQuery[17]. The latter is a query language for XML documents.

Orc-X has been applied to exercise distributed resource management by enriching

the data management facilities of Orc with XQuery. On the other hand, transaction

processing often raises complicated problems. There are different approaches for

treating this issue. Coons proposed a multi-strategy approach for Orc which can

apply different processing alternatives to meet different situations[7]. Kitchen

studied atomicity and coatomicity in his PhD thesis[10]. Both concepts are based on

causality (a partial order) and used for defining sound transactional properties. The

former says that the events in an atom are causally either all or none before an

event outside the atom and reversely, the events outside an atom are causally either

all or none before an event inside the atom. The resulting language is called Ora

(Orc with Atomicity).

For programming service oriented architecture, there are two basic paradigms:

the orchestration approach and the coordination approach. While the former

orchestrates distributed applications based on a central control, the latter

coordinates a set of distributed agents with appropriate protocols and is called

choreography. It was De Nicola et. al. who have developed a language Korc[19] to

combine the functions of Orc and Klaim[18]. The latter is a tuple based coordination

language which extends the single parameter language Orc to a polyadic one. (At

this place it may be adequate to give few words about the name use. In the early

stage of Knorc development, we were not aware of Klaim and its further

development Korc. So we named our calculus as Korc. It was only later that we

knew the Klaim-Korc-story and renamed our Korc to Knorc. It may be meaningful

to point out that their ‘K’ means Klaim, while that of ours means Knowledge).

Besides programming paradigm, the programming style of Orc also affects its

application. Nicolas, C. et al. proposed to combine multi-tier programming facilities

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 209

with mash-up functions with Orc. Web programming is generally supported by a

server programming language, a graphical user interface and a client oriented

language. Hop (a Lisp dialect) is a multi-tier language unifying all these three layers

to a single tool[20]. Mash-ups are essentially data oriented activities in form of Web

services constructed using various kinds of Web sources. Orc is good in Mash-ups

programming. Nicolas, C. et al. introduced Orc functions in HOP to unite the two.

As a language for wide area computing, program security is one of the major

concerns for implementation. Thywissen, Quark and Yew studied the concept of

secure information flow and security type checking[21,24,26]. An information flow is

said to be secure if it does not leak information to unauthorized third parties[21].

They introduced a characterization of secure information flow in Orc and built the

Orc compiler stOrc[24] extended with security type checks to assure information flow

security (don’t care the in-site security). Regarding the static and/or dynamic type

checking, they focused on the static integrity of Orc programs and built an extension

to Orc called cOrcS[26], meaning: continuation of Orc security.

3 Motivation and New Ingredients of Knorc

Usually, every principle of programming has its positive but also negative aspects.

This is also true for Orc. While concentrating at wide area service orchestrating, it

gives up many technical constructs. Programmers have to take all these in charge. On

the one hand this strategy often increases the burden of writing applications, while

on the other hand it provides less instruction for implementation and leaves big space

free for it. This was one of the major concerns on which our motivation of designing

Knorc was based. Partially due to our interest in process algebra and its application,

our approach followed the line of Orc as a calculus. The following example 1 is to

illustrate why we are interested in extending the calculus Orc to Knorc, in particular

to illustrate the usefulness of introducing logic programming facilities in orchestration

languages. In particular, we are interested in combining process algebra with logic

programming. We believe that this will increase the power of Orc-like languages.

To explain the application background of Orc as a wide area orchestration

language, Misra used an example of office work for inviting a speaker[15]. Usually,

the secretary in charge of arranging this visit has to do lots of things, including

sending invitation letter, negotiating on the date of visit, subscribing to hotel room

and booking flight tickets, registering for a lecture room, etc. To complete all these,

a program in Orc for orchestrating relevant function modules on the internet is

helpful. However, many practical decisions have to be made and many potential

conflicts have to be resolved, such as:

– Date of visit: should fit both guest’s and host’s time schedule;

– Flight ticket reservation: different airlines, departure and arrival times, number

of stops, etc.;

– Hotel reservation: number of stars, price class, distance to the host university;

Facing so many details, it is not reasonable to write all of them in one Orc

program at least due to two major reasons. From the software engineering aspect,

the stepwise refinement of program in a top down way is appreciated. Programmers

210 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

are encouraged to first write a concise but rough program and then try to refine it.

From the software reuse aspect, it is appropriate to separate the knowledge content

from the coding part of the program. Once the program is written, it is then easy

to modify it for arranging the visit of next speakers. Based on this consideration,

we think that logic programming facilities are good candidate for representing the

knowledge part.

In Knorc, the knowledge part is programed with Horn-like logic rules. The wanted

result is obtained with resolution-like proof procedures. Each time a new task (plan

of orchestration) is to be programmed, the amount of necessary revision of the reused

program can be kept at the minimal level. Let us consider an example written in

Knorc, where Invitation is a site deciding on the visiting date, airline number and

accommodating hotel:

Example 1. Knorc program for arranging a visit.

Knorc expression:

Invitation(arrival, f light, hotel) >[arrival, f light, hotel]

>Letter(arrival, f light, hotel)
(4)

Knorc Knowledge base:

Invitation(x, y, z) :− V isit-date(x), F light(x, f),Hotel(x, h)

V isit-date(t) :− Fit(t, host), F it(t, visitor)

Flight(t, f) :− Fquery(t, ftable), In(f, F), Eq(f -time(f),

min(f -time(ftable)))

Hotel(t, h) :− Hquery(t, htable), In(h, htable), Eq(distance(h),

min(distance(htable)))

Fit(t, host) :− In(t, [21, 22, 23])

Fit(t, visitor) :− In(t, [19, 20, 21])

In this program, Invitation is a site for making arrangement while Letter is

another site for sending invitation letters. In the sense of Orc the expression (4) cannot

be called because the parameters are variables. However they can be instantiated by

reasoning with rules in the knowledge base where t is the date of visit to be fixed, fit

is a predicate for checking the appropriateness of this date regarding both the host

and the visitor, fquery is a site for acquiring all information ftable on flights available

on that day, f -timeis the time of flying needed, hquery is a site for acquiring all

information htable on hotels available on that day, distance is the distance from hotel

to university. This example shows that once the Knorc program is written, it can be

used for any visitor at any time, except the last two data (the Fit rules) which have

to be modified to meet each concrete visit.

We see that in the rule bodies there are also site calls such as f -query and h-query

besides predicates Visit-date, Flight and Hotel etc. In fact we even allow rule bodies

to contain expressions. Furthermore sites such as Invitation appear also as rule heads

and play the role of predicates. These are generalizations of Horn logic and explain

why we call them Horn-like.

Other new facilities Knorc introduces to Orc include the following:

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 211

3.1 Site as Boolean procedure

Knorc considers each site as a Boolean procedure like those in high level

programming languages. Beyond the possibility of publishing a value, each site call

in Knorc, if performed, always returns a Boolean value. It will be reserved, used or

discarded depending on different contexts.

3.2 Site instantiation with logic rules

A site call can only be performed if all its parameters are instantiated. In Knorc

it is possible to instantiate the variable parameters via rule inference. The idea is to

prove the site with Horn-like logic rules. The site call can then be performed if the

proved copy is a fully instantiated one.

3.3 Logic programming with predicates and site calls

In any Knorc’s sequential rule, the body components (called terms) can be either

predicates or sites, even expressions. The rule head is proved if all terms of its body are

proved. A predicate (as a term) can only be proved by rule inference. An expression

(as a term) is proved if its call terminates and returns the Boolean True. Instead of

Prolog-like backtracking, a Knorc rule searches a solution in a fully non-deterministic

way.

3.4 Multiple forms of parallelism

Beyond sequential rules, Knorc also allows parallel rules. The components of

parallel rules are expressions but not predicates. There are four kinds of parallelism

in Knorc: the or-parallelism (among components of an or-parallel rule) as well as the

and-parallelism (among components of an and-parallel rule), where the number of

components is known and not too large; the or-set parallelism (or-parallelism looped

for a set of parameters) and the and-set parallelism (and-parallelism looped for a set

of parameters) where the number of terms is not known or too large such that it

would be too cumbersome to list them.

3.5 Chained network of abstract knowledge sources

While Orc does not care any particular data types Knorc assumes the existence of

an abstract form of data, the network of abstract knowledge sources (AKS or simply

KS). Each KS mimics a Web site, or a Web page, or an information piece on the Web,

etc. Each KS consists of its content and a set of links pointing to other KSs. Search

is the keyword for the KS network. While Orc assumes a closed world in the way

that each site it calls either exists or not, Knorc assumes an open world by allowing

the system searching a site of which the existence is unknown.

3.6 Symmetric and asymmetric communication

Orc only allows tree-like asymmetric communication between parent and son

processes. Knorc reserves this tree-like communication and introduces symmetric

process-to-process communication in addition, which is necessary for cooperating

parallel searches. Knorc’s communication primitives include both peer-to-peer

communication and broadcasting. Each time when communicating the sender sets

up a fresh mailbox with keys (passwords) and message to be exchanged. Each

212 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

receiver owning a key may pick up the message.

3.7 Value tuples and broadband communication

Knorc extends the control parallelism (parallel rules) to data parallelism. Similar

as the authors of Korc did[19], we introduce tuple values in Knorc, not only as data

representations of parameters, but also as value groups exchanged through channels

and mailboxes.

In next sections we will present more details on the design of Knorc.

4 Syntax and Informal Semantics of Knorc

The syntax of Knorc is a conservative extension of Orc’s syntax. In the syntax

of Orc people classify the computational units in three categories: site calls,

combinatory expressions and (usually recursively) defined expressions. The syntax

of Knorc consists of two parts: the basic syntax and the rule syntax (including

syntax for parallelism and communication).

Table 2 Basic syntax

KP ∈ KnorcProgram ::= f̄ ∈ expression list;

rbe ∈ sequential rulebase or empty;

prbe ∈ parallel rulebase or empty;

de ∈ definition list or empty

f, g, h ∈ expression ::= M(p̄)

∥ E(p̄)

∥ [M(p̄)]

∥ 0

∥ f >(x̄; b)> g

∥ f | g
∥ f where (x̄; b) :∈ g

∥ f while (x̄; b) :∈ g

∥ f where y = s while (x̄; b) :∈ g

∥ f while y = s while (x̄; b) :∈ g

f̄ ∈ expression-list ::= f ∥ f, f̄
p̄ ∈ parameter-list ::= p ∥ p, p̄
d ∈ definition ::= D(x̄)∆f

d̄e ∈ definition-list ::= d ∥ d, d̄e ∥ empty
x ∈ variable name

v ∈ value name

b ∈ Boolean variable name

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 213

s ∈ knowledge source name

M ∈ site name

E ∈ expression name

p ∈ parameter name
∪
data

As a matter of fact, most of the Knorc’s basic syntax rules are similar with the

corresponding Orc syntax rules, except that instead of limiting on a single parameter

x we have lists of parameters x̄. Besides, the basic syntax of Knorc makes a little

but important extension to Orc’s syntax. In particular, the restricted site call [M(p̄)]

means it is prevented from using rule inference to instantiate its parameters. In

other words, restricted site calls have only the same power as if they were Orc’s site

calls. Besides, the last three expression formats need a few explanations. The while

loop keeps repeating calling f(x̄) unless the site g cannot generate enough x̄ values.

The where-while and while-while loops are used to do ergodic searches on the

knowledge source network. The first structure follows one link each time and searches

only along a single line. The second structure does search in a breath first way and

follows all links having the same start point. Its search traces form a tree. For details

see the formal semantics of the knowledge source part.

Table 3 (Sequential) rule syntax

rbe ∈ sequential rulebase or empty ::= rb ∥ empty

rb = r̄ ∈ rulebase ::= r ∥ r, r̄

r ∈ rule ::= head(r) :− body(r)

head(r) ∈ rule head ::= rn(pa)

body(r) ∈ rule body ::= t̄

t̄ ∈ term sequence ::= t ∥ t, t̄ ∥ empty

t ∈ term ::= f ∥ pr

pr ∈ predicate ::= pn(pa)

pa ∈ argument-list ::= pa ∥ pa, pa

pa ∈ argument ::= v ∥ x ∥ fn(pa)

pn ∈ predicate name

fn ∈ function name

rn ∈ rule name

The second part of syntax, the rule syntax, is completely new. It introduces two

kinds of rules: the sequential ones and the parallel rules.

A sequential rule consists of a rule head and a rule body. Each rule body contains

a finite sequence of expressions and/or predicates which are all called terms. A rule

with an empty body is called a datum. In Knorc programming the rules are used to

instantiate site calls and expressions in situations when they are not fully instantiated

and remain pending. Rules are also useful in finding the best fit instantiations for site

calls and expressions (when there are several possibilities) in different circumstances.

In Knorc’s terminology, instantiating a site call using rules is called a proof. To prove

a site call M(x̄), the proof procedure consists of the following steps:

214 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

1. Find a rule r, such that M(x̄) has a mgu (most general unifier) with the rule

head which should have the form M(x̄). Assume the mgu is φ;

2. If r’s body is empty, thenM(x̄)φ is proved if it does not contain variables, which

is the wanted instantiation;

3. Otherwise M(x̄)ψ ◦ φ is proved if it does not contain variables and all terms in

the body of rψ ◦φ are proved with returned Boolean value True, where ψ is an

appropriate substitution;

4. If the term is a predicate in the above process, use this procedure recursively to

prove it;

5. If the term is a site call then call this site if it is instantiated, otherwise call this

procedure recursively to instantiate it. This site call is proved if it finally gets

fully instantiated and the call successfully terminated with returned Boolean

value True;

6. If the term is an expression then try to prove all its site calls accordingly with

returned Boolean value True.

Note that the form of a sequential rule is quite similar to that of the logic

programming language Prolog. However, our proof procedure is not necessary the

same as in Prolog which is based on depth first backwards reasoning according to

the classical resolution principle. In Knorc the inference procedure of rule reasoning

is strongly non-deterministic. It is well known that a Prolog program does not

guarantee to provide a solution even if a solution exists. However in the same

circumstance Knorc provides a solution anyway and in principle no solution will be

excluded. We will see the non-deterministic solution finding mechanism of Knorc

rules in the latter section on formal semantics.

Let’s compare sequential composition in Orc, sequential composition in Knorc

and sequential rule with Table 4:

Table 4 Comparison of sequential program structure of Knorc with Orc

sequential
composition

in Orc

sequential
composition

in Knorc

sequential

rule in
Knorc

Form f1 >x1> f2 f1 >x̄1> f2 H(p̄) :−f1(p̄1), f2(p̄2)
Value passing

f1 → f2 yes yes no
f1 initially

fully instantiated yes not necessary not necessary
fi instantiation

propagates to fj no no yes
fi instantiation

propagates to H no no yes

Result deterministic yes not always not always

We omit the comparison of Knorc sequential rule with Orc’s reverse sequential

composition f1 <x1< f2 which is simple. Now we consider the following

Example 2.

expression : N(x, y, z) >(w; b)> M(w)

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 215

rule : N(u, v, w) :− Q(u, v), R(v, w),W (w)

data : Q(1, 2), Q(3, 4), R(2, 8), R(4, 6),W (6),W (8)

We see that although the parameters of N(x, y, z) are variables they can still be

instantiated using the rule and data by inference to produce N(3, 4, 6) and N(1, 2, 8),

which will be called successfully and possibly publish values.

Now the problem arises: what will happen if the site can be instantiated by the

expression itself:

expression : N(x, y, z) >(w; b)> M(w) where x :∈ h where y :∈ k where z :∈ e

(5)

In this case the result can be non-deterministic. Namely N(x, y, z) can be fully

instantiated and publish values by using logical reasoning as said above, but can also

be instantiated to other instances of N(x, y, z) by the three where operations and

publish other values for w. Some implementations may chose the strategy of letting

the instantiation be depending on what happens first: instantiation by rule reasoning

or by h, k, e value publication. But any particular strategy does not belong to the

formal semantics and is left to the decision of implementation. This is a new form of

non-determinism introduced in addition to the existing ones of Orc. Furthermore, this

is also a new form of concurrency, since the rule inference and the generation of x, y, z

values by the three where branches are running in parallel. We adopt the strategy

of winner-takes-all such that the variable parameters are either instantiated by rule

inference or by the expression value generators (in above example h, k, e) themselves.

Knorc refuses a mixed instantiation.

Note that the call to N(x, y, z) will remain pending if rule reasoning does not

produce a full instantiated copy of N(x, y, z).

Example 3. Mary won’t be notified if the (Boolean) parameter ‘paid’ is not

set to ‘yes’.

expression : Registration(name, fee, paid) >(name; b)> Notice(name)

data : Registration(John, 3000, paid);Registration(Mary, 3000, paid), . . .

On the other hand, a fully instantiated site like that in N(2, 3, 4) >w> M(w)

will always be called immediately without rule inference, even if there are such rules

and even the call N(2, 3, 4) would succeed.

Table 5 (Parallel) rule syntax

prbe ∈ parallel rulebase or empty ::= prb ∥ empty

prb ∈ prule base ::= par ∥ par, par

par ∈ prule ::= or-rule ∥ and-rule ∥ orset-rule ∥ andset-rule

oru ∈ or-rule ::= head(par) :− or([M] : f)

aru ∈ and-rule ::= head(par) :− and([M] : f)

ors ∈ orset-rule ::= head(par) :− or-set(xi ∈ gi)([M] : f)

ans ∈ andset-rule ::= head(par) :− and-set(xi ∈ gi)([M] : f)

head(par) ∈ prule head ::= prn(pa)

prn ∈ parallel rule name ::= characterstring

216 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

In this syntax par is a parallel rule and prb is a parallel rule base. There are four

types of rule bodies, implementing four types of parallelism: the or-parallelism, the

and-parallelism, the or-set-parallelism and the and-set-parallelism. Different from

sequential rules, a parallel rule body consists only of a group [M] : f of guarded

expressions with [M] as guards (which are limited site calls) but no predicates. Orset-

rules and andset-rules have a set indication xi ∈ gi between the rule head and rule

body which includes a group of components (i.e. expressions) who are allowed to run

in parallel according to the following laws:

– The calling to a parallel rule consists of four steps: the caller (a predicate or a site

call to be proved) tries to match the rule head (find a most general unifier with

it, mgu for short); if succeeded, propagate the mgu (substitution) to the whole

rule body; invoke a parallel call of all components of the rule body; for each

component, test the guard first, if succeeded, then try to prove the expression

itself behind the guard;

– Checking the guard will not invoke any extra rule inference since it is a limited

site call. No matter the proof of the guard is successful or not, it does not leave

any side effects. Any potential effects will be removed after the proof procedure

is terminated;

– The call to an or-rule is completed if any one of the components’ calls is

completed and returns the Boolean value True;

– The call to an and-rule is completed if all components’ calls in it are completed

and return the Boolean value True;

– The call to an orset-rule is completed if any one of the components’ calls is

completed with respect to all elements of the set indication and returns the

Boolean value True;

– The call to an andset-rule is completed if all components’ calls are completed

with respect to all elements of the set indication and return the Boolean value

True;

– Note that in all cases above, the Boolean value returned by the rule calling

depends on the rule head itself. Thus, a successful rule call may also return the

Boolean value false;

– Roughly speaking, the call to an orset-rule or andset-rule can be considered

as a call to a matrix of components. Since calls to the same site with different

parameter instantiations can be run in parallel, this is matrix parallelism instead

of just linear parallelism.

Example 4. A class of students will fail to pass the competition if any of

them fails to pass the exam for any of the subject. They will win the competition if

all students of the class get the score ‘very good’ in all subjects. Class A is the set of

all students. All guards are omitted.

Lose(A) :− or-set(x ∈ classA)(Fail(math, x), Fail(physics, x), Fail(chemistry, x));

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 217

Win(A) :− and-set(x ∈ classA)(Super(math, x), Super(physics, x),

Super(chemistry, x));

Example 5. Search for all Web sites relating to some key topic, key for short.

Assume that to each link p is assigned a meaning presenting a hint on the topic x of

the target Web site (pointed to by p). Link p will be selected for transition only if p’s

meaning is close enough to key. The following program looks for all Web sites whose

topic is close to key.

Search(con, s, key) :− and-set(p ∈ link(s))([Close(p, key)] : Collect(s, p, key));

Collect(s, p, key) :− Include(con, linked(s, p)), Search(con, linked(s, p), key);

This is a nested cross-calling of sequential and parallel rules.

Example 6. Sometimes it is meaningful to apply the set-parallel structure

even to the cases where the rule body has only one component. The Goldbach

conjecture says that any even integer larger than 2 can be represented as the sum of

two primes. A prime is a natural number which is remainderless divisible only by 1

and itself. The first rule below checks the Goldbach conjecture for the first one

million even integers. The second one investigates the first one million odd integers

to find all primes in this region.

Goldbach :− or-set(x ∈
[
1, 2× 106

]
)([Even(x)] : Check-conjecture(x));

Euler :− and-set(x ∈
[
1, 2× 106

]
)([Odd(x)] : Check-prime(x));

Check-conjecture(z) :− and-set(x ∈ [1 :
⌊z
2

⌋
])(Check-prime(x),Check-prime(z − x))

This program allows 2 × 106 computers to run in parallel to complete the

computation at once. This shows that our set-parallelism device is able to program

massive parallelism in an elegant way. The set involved in the above example is

additive: each element can be produced with simple mathematical operation

iteratively. For more sophisticated sets the advantage of set parallelism would be

even more remarkable.

4.1 Fundamental sites

Knorc retains all Orc’s fundamental sites and introduces two new ones for linked

search and two for process-to-process communication in addition:

Table 6 Fundamental functions and sites

Fundamental Functions:

link(s) : generates the set of all links in s, where s is a KS;

linked(s, p) : generate the KS pointed to by link p of KS s;

Fundamental Sites:

send(v, k̄) : establish a fresh mailbox m#(v, k̄) with a value v and a set of keys k̄;

receive(x, k) : find a mailbox m#(v, k̄) whose key set k̄ contains the key k, picks

the value v contained in m and use v to instantiate receiver’s variable x

to become recieve(v, k). At the same time the key k is removed from

the mailbox.

218 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

Parallelism, non-determinism and communication are all important and

interesting issues. Since the major new feature of Knorc is the introduction of logic

programming, it would be interesting to compare Knorc with some well-known

parallel logic programming languages in these aspects. This is shown in Table 7.

Let’s explain some terminology. By “in rule or parallelism” and “in rule and

parallelism” we mean the or-parallelism and and-parallelism among the components

of the same rule body of Knorc. By “inter rule or parallelism” and “inter rule and

parallelism” we mean those usually called or-parallelism and and-parallelism in the

literature[23]. “Don’t care non-determinism” means that whenever a heuristically

chosen parallel component fails to be proved no new choice will be made. “Don’t

know non-determinism” means “backtrack whenever possible” after every failed

choice. We propose the concept “don’t miss non-determinism” by which we mean

trying every possibility to find a solution whenever one exists.

Table 7 A comparison of rule parallelism, non-determinacy and

communication

Prolog PARLOG Concurrent Knorc

Prolog

In rule No Yes Yes Yes + Set

and-

parallelism

In rule No No No Yes + Set

or-

parallelism

Inter-rule No No No Yes + Set

and-

parallelism

Inter-rule No Committed Candidate Yes + Set

or- choice clause

parallelism

Non- don’t know don’t care don’t care don’t miss

determinism non- non- non- non-

determinism determinism determinism determinism

Guard No Yes Yes Yes

Communication No (shared Message asymmetric +

memory) passing symmetric

Stream (three communication

Communication primitives)

More precisely, Knorc provides tree-like asymmetric communication and

symmetric process to process refreshable mailbox communication. Note that Table 7

illustrates only rule parallelism which is a specific property of Knorc. This explains

why we did not include Orc or other Orc-like languages in Table 7 because rule

inference is not a part of Orc programming style. As for parallelism within

expressions there is no explicit difference between Orc and Knorc except that Knorc

does have an implicit concurrency which does not exist in Orc. Namely before the

firing of any expression which is not fully instantiated like (R 1), the exploratory

instantiation of its uninstantiated parameters goes in two ways concurrently: by rule

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 219

inference and by the where structure. This parallelism affects the result of the

program, but is not to see explicitly.

5 Formal Semantics of Knorc

5.1 Basic site call semantics

In the first part of Knorc’s operational semantics we list only those ‘normal’

transition rules without reference to the rule part. We basically adopt the notation

and style of Orc’s semantics except that some extensions are made to cover the

enriched syntax. The extensions of basic syntax are along three lines. First we

introduce ‘broadband communication’ with the data list ymbol x̄ in most of the

syntax rules, which is in accord with the ‘tuple based data’ of Korc[19]. Second we

include conditional site call if(M(v̄)) to enrich the programming style and third we

extend the where structure to while structure to easy loop programming.

Furthermore since we allow normal site calls to make rule inference to instantiate

their variable parameters (shown below later) we should have a way to limit this

function in case of need. We use bracketed site calls to express the limitation. Last

but not least we include the Boolean value returned by site calls explicitly in the

transition rule representations. For the sake of clarity we include the basic site calls

such as if and let in the semantics description.

Table 8 Basic transition rules of knorc

k fresh

M(v̄)
(Mk(v̄);b)−−−−−−→?k

[M(x, ā)]
⊥−→ c ∈ {Mk(v̄), k?v̄, !v̄, τ} (6)

?k
(k?v̄;b)−−−−→ let(v̄)

f
(c;b)−−−→ f ′

f where (x̄; b) :∈ g
(c;b)−−−→ f ′ where (x̄; b) :∈ g

(7)

let(v̄)
(!v̄;b)−−−→ 0

g
(c;b)−−−→ g′ c ̸=!v

f where (x̄; b) :∈ g
(c;b)−−−→ f where (x̄; b) :∈ g′

(8)

f
(c;b)−−−→ f ′

f | g (c;b)−−−→ f ′ | g

g
(!v;b)−−−→ g′

f where (x̄; b) :∈ g
(τ ;b)−−−→ f [v̄/x̄]

(9)

g
(c;b)−−−→ g′

f | g (c;b)−−−→ f | g′
f

(c;b)−−−→ f ′, f ̸= if, c ̸=!v̄

f >(x̄; b)> g
(c;b)−−−→ f ′ >(x̄; b)> g

(10)

f
(!v̄;b)−−−→ f ′, f ̸= if

f >(x̄; b)> g
(τ ;b)−−−→ f ′ >(x̄; b)> g | g [v̄/x̄]

M(v̄)
(c;False)−−−−−→ N(ū)

if(M(v̄)) >(x̄; b)> g
(τ ;False)−−−−−→ 0

(11)

M(v̄)
(c;True)−−−−−→ N(ū), c ̸=!u

if(M(v̄)) >(x̄; b)> g
(τ ;True)−−−−−→ if(N(ū)) >(x̄; b)> g

(12)

220 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

M(v̄)
(!ū;True)−−−−−−→ N(w̄)

if(M(v̄)) >(x̄; b)> g
(τ ;True)−−−−−→ if(N(w̄)) >(x̄; b)> g | g [ū/x̄]

(13)

f
(c;b)−−−→ f ′

f while (x̄; b) :∈ g
(c;b)−−−→ f ′ while (x̄; b) :∈ g

(14)

g
(c;b)−−−→ g′, c ̸=!v

f while (x̄; b) :∈ g
(c;b)−−−→ f while (x̄; b) :∈ g′

(15)

g
(!v̄,True)−−−−−→ g′

f while (x̄; b) :∈ g
τ−→ f [v̄/x̄] | f while (x̄; b) :∈ g′

(E(x̄)∆f) ∈ D

E(p̄)
τ−→ f [p̄/x̄]

(16)

The transition rules (6)–(11) are basically (above mentioned) modified versions of

similar rules of Orc. (6 left) meansM(v̄) setting up a new call with a fresh handle ?k;

(7 left) means the fresh call receiving a result v̄; (8 left) means the result published and

the process terminated. (6 middle) shows the pending bracketed site call [M(x, ā)]

with variable parameter x to mean that it is not allowed to use rule inference to

instantiate its parameters as the unbracketed one M(x, ā) may do. (6 right) defines c

for all following rules. Rules (7 right)–(10 right) and (9 left)–(10 left) are similar with

Orc. Rules (11)–(13) introduce conditional site calls where the Boolean value returned

by M(v̄) determines the value of the condition. Rules (14)–(16 left) introduce the

while structure in addition to the where structure.

It may be adequate to say a few words about the Boolean value b produced by

a site call. That in Knorc each site call returns a Boolean Value (besides published

values) is a necessity of the fact that the site calls play also the role of predicates or

Boolean procedures in a logic rule where each term must have a Boolean value True

or False.

On the other hand, since each site call returns a Boolean value this value can

be used in the conditional control of Knorc programs. As a matter of fact Misra

himself[16] has already come to the idea of using Boolean value in program control

in some specific program contexts. What we have done was just to generalize this

idea to a universal principle of site call mechanism. Note that this Boolean value can

only be used to support conditional control either explicitly serving as a parameter

in if-site call (12-8) or implicitly serving to decide the success or failure of a rule call.

The following part of semantics is specifically defined for Knorc’s rule part and

is therefore completely new. We invite readers’ attention to the following two points.

The first one is that an and-parallel rule finishes only when all components finish which

is a sharp difference to Orc’s parallel composition of sites where the components act

freely and independently from each other. Our second idea is to adopt the mechanism

of continuation for and-parallel rules. Note that this continuation produces no real

effect if all components of the rule are predicates. This means it does not change the

semantics of Prolog.

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 221

5.2 Horn logic rule part semantics

The key new ingredient of Knorc vs. Orc is the inclusion of logic programming

facilities used to instantiate the variable parameters of site calls in case they are

pending. The logic used is like Horn logic?-a subset of predicate logic. A Horn clause

is a disjunctive clause with at most one positive atom. The Horn clauses and their

widely used proof procedure–the resolution procedure (proposed by A. Robinson) are

the semantic basis of the logic programming language Prolog. The rule form of a

Horn clause is written as:

P :− P1, . . . , Pn or P (17)

where P is the rule head and constitute the rule body. P is also called a datum

when the body part is empty. In order to increase efficiency Prolog implementations

are usually based on a recursive, backwards and depth first proof procedure with

backtracking.

In Knorc semantics of logic programming the rules are not strict in Horn form

since some literals may be site calls or even expression calls. We call it Horn-like

logic and rely upon the same syntactic form like Prolog mentioned above with some

modifications. We adopt its backwards recursive semantics but without backtracking

which is replaced with non-determinism. The latter is semantically much simpler and

can obtain all solutions, while the backtracking approach may lose some solutions

because the set of solutions it obtains depends on the ordering of rules. Another

advantage of relying upon non-determinism is to provide us with chances of benefitting

parallelism.

Remember in Orc calculus there are four base events: the publication event !v, the

internal event τ , the site call eventMk(v) and the response event k?v. Misra used the

unified symbol c to represent them. Knorc inherits these notations from Orc with the

enrichment of a Boolean value b ∈ {True,Flase} which is an independent information

accompanying these events. As a matter of fact we have noticed that Misra has been

already aware of the usefulness of introducing a Boolean value as part of the result of

calling a site[15]. Now these four events are represented as (!v; b), (τ ; b), (Mk(v); b) and

(k?v; b). In case the returned Boolean value b does not affect the result, the symbol b

can be omitted, or even the simple representations !v, τ , Mk(v) and k?v can be used

instead. Moreover, the value transmission notations >(x; b)> and where (x; b) :∈ g

can be simply written as >x> and where x :∈ g. In order to include Horn logic

proof procedure in our semantics, we only need to add one more base event—the

substitution event @φ, where φ is a substitution [v̄/x̄]. We will see below that this

base event is very essential in describing our Horn logic semantics. It is also powerful

enough such that we don’t need to add any other base events for characterizing rule

inference. We use symbol c ∈ BE = {!v, τ,Mk(v), k?v} and any ∈ AN = BE
∪
{@φ}

to denote the base events. Besides, we introduce composite events c(φ), any(φ),

c∗(φ), any∗(φ), c+(φ), any+(φ) to denote first performing substitution φ and then

the event(s) c, any, c∗, any∗, c+, and any+.

Example 7. add(x, 1, y)
@[1/x]−−−−→ add(1, 1, y)

The transition sequence

add(x, 1, y) >y> let(y)
@[1/x]−−−−→ add(1, 1, y) >y> let(y)

!2−→ let(2)

222 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

may be rewritten as

add(x, 1, y) >y> let(y)
!2([1/x])−−−−−→ let(2)

Table 9 shows the transition rules for Knorc’s rule part reasoning:

Table 9 Transition rules of Knorcs Horn logic rule part

verify-site(M)
any∗(φ)−−−−−→Mφ

c′−→M ′,M not in [M]

M
c′◦any∗(φ)−−−−−−−→M ′

(18)

mgu(A, head(r))
@φ−−→ Aφ, prove-seq(body(r)φ)

any∗(ψ)−−−−−→ let(body(r)ψ ◦ φ)

verify-atom(A)
any∗(ψ◦φ)−−−−−−−→ Aψ ◦ φ

(19)

mgu(A, head(r))
@φ−−→ Aφ, body(r) = empty

verify-atom(A)
@φ−−→ Aφ

(20)

verify-atom(M)
(any∗(ψ),True)−−−−−−−−−−→Mψ,Fv(Mψ) = ∅

verify-site(M)
any∗(φ)−−−−−→Mφ

(21)

verify-atom(P)
(any∗(φ);True)−−−−−−−−−−→ let(Pφ)

prove-pred(P)
any∗(φ)−−−−−→ let(Pφ)

(22)

verify-site(M)
any∗(φ)−−−−−→Mφ,Fv(Mψ) = ∅

verify-exp(E{M}) any∗(φ)−−−−−→ E({M})
(23)

verify-exp(E)
any∗(φ)−−−−−→ Eφ

(any′+,True)−−−−−−−−−→ E′ ⊥−→

prove-exp(E)
any′+◦any∗(φ)−−−−−−−−−−→ E′

(24)

prove-pred(hd(x))
any∗(φ0)−−−−−−→let(hd(x)φ0),|x|>1,prove-seq(tl(x))

any′∗(φ1)−−−−−−→let(tl(x)φ1)

prove-seq(x)
any′∗(φ1)

∪
any∗(φ0)−−−−−−−−−−−−−−→let(xφ1◦φ0)

(25)

prove-exp(hd(x))
any+(φ0)−−−−−−→ hd(x)′, |x| > 1, prove-seq(tl(x))

any′∗(φ1)−−−−−−→ let(tl(x)φ1)

prove-seq(x)
any′∗(φ1)

∪
any+(φ0)−−−−−−−−−−−−−−→ let(xφ1 ◦ φ0)

(26)

prove-pred(hd(x))
any∗(φ)−−−−−→ let(hd(x)φ), hd(x) = x

prove-seq(x)
any∗(φ)−−−−−→ let(xφ)

(27)

prove-exp(hd(x))
any+(φ0)−−−−−−→ hd(x)′, hd(x) = x

prove-seq(x)
any+(φ0)−−−−−−→ hd(x)′

(28)

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 223

Different from Table 8 the rules in Table 9 make use of a group of specific site

calls which are not part of Knorc syntax. They can be considered as system reserved

internal functions which are not available to the programmer and are only for

describing semantics.

The transition rule (18) is the bridge between the traditional site call-oriented

semantics of Orc and the new added semantics of logical rule inference in Knorc. It

says that a site M may be called even if it is not fully instantiated. The way to do

that is to try to use rule inference to find a legal instantiation. We call this process

‘verify’. More concretely the call to (the not fully instantiated) M may be performed

if it is verified (by instantiating the parameters with substitution φ and side effects

any∗ generated by rule inference with procedure ‘verify-site’). In other words, the site

M may perform the (composite) event c′ ◦ any∗(φ) to become M ′. There is however

a restriction. A site call in form of [M] is not allowed to make use of rule inference

to get instantiation, since there are situations where rule inference is not applicable

to site calls even if the latter is pending.

To make the presentation simple we use the unified notation ‘atom’ to represent

rule head, predicate and site call. Transition rule (19) says that if atom A matches the

head of some Horn rule r with most general unifier φ and body(r)φ can be proved by

performing the composite event any∗(ψ) then the substituted atom Aψ ◦φ is verified.

Transition rule (20) says that if the rule body is empty (rule r degenerates to data)

then matching the head of r is enough for atom A to be verified. These two rules

together show how an atom can be verified. Transition rule (21) says that site M is

verified if it is verified as an atom and the result contains no free variables. Thus

(18)–(21) show roughly how an uninstantiated site can be instantiated and called

using rule inference.

From (19) we see that each rule inference consists of two steps: first matching

the rule head with a most general unifier and then proving the rule body with further

substitutions and possibly some side effects. A rule body consists of an ordered set

of terms each of which is a predicate or an expression. (22) says that a predicate

(as a body term) is proved if it is verified (under some substitution φ) with Horn

logic inference. (23) shows that the verify-exp procedure verifies an expression only

one site (in the expression) each time where the notation E{M} means expression

E contains (among others) a site call M . (24) shows that an expression (as a body

term) is proved if it performs a finite but non empty set of events (including those

generated by rule inference) and finally returns the Boolean value True. Note the

difference between hd and head that hd(s) means the first item of a sequence s, while

head(r) means the head part of a Horn logic rule r. The transition symbol E
⊥−→

means E cannot perform an event anymore.

Given that all terms (predicates and expressions) of a rule body are proved,

transition rules (25)–(28) show how the body of a Horn rule is proved. They are

designed as a recursive procedure by separating the Horn rule body x in its head

part hd(x) and tail part tl(x). The transition rules (25) and (26) apply to the cases

where hd(x) is a predicate or an expression, respectively. The transition rules (27)

and (28) apply when tl(x) is empty. Note that in (25) and (26) the composite events

generated by prove-seq(x) are the unions of the events generated by the hd-part and

the tl-part respectively because the hd-part and tl-part run concurrently. The

224 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

events any′∗(φ1)
∪
any+(φ0) produced by these two parts are interleaved in any

possible order, except that substitutions φ0 and φ1 must happen before any+ and

any′∗ respectively. This is different from (24) where the event combinations are

sequential ones. All events in any∗ should happen before those in any′+.

5.3 Parallel rule part semantics

Unlike the (sequential) logic rules discussed above the parallel rules in Knorc do

not contain any predicates. The rule body of each parallel rule consists of a group

of component expressions running in parallel where each component is preceded by

a guard. That means each component is guarded where each guard is a restricted

site call because we don’t want the guard test invokes extra rule inference. Testing

a guard is running this site call where no matter the test succeeds or fails, all side

effects produced during the test will be cancelled after testing.

Table 10 Transition rules of knorc’s parallel rule part

mgu(A, head(r))
@φ−−→ Aφ, or(body(r)φ)

any+−−−→ f ′
⊥−→

A
any+(φ)−−−−−→ A(subs(any+(φ)))

(29)

[M]
(c;True)−−−−−→ [N] , f

(any+,True)−−−−−−−−→ f ′
⊥−→

or([M] : f, [Mi] : fi)
any+−−−→ f ′

⊥−→
(30)

mgu(A, head(r))
@φ−−→ Aφ, and(body(r)φ)

any+−−−→ and(f ′)
⊥−→

A
any+(φ)−−−−−→ A(subs(any+(φ)))

(31)

∀i, [Mi]
(ci;True)−−−−−−→ [Ni] ,

∏
i∈{1,2,...,|body(r)|} fi

(any+i ,True)−−−−−−−−→ f ′i
⊥−→

and([Mi] : fi)
∪

i any
+
i−−−−−→ and(f ′i)

⊥−→
(32)

mgu(A, head(r))
@φ−−→ Aφ, or-set(xi ∈ gi)(body(r)φ)

any+−−−→ f ′
⊥−→

A
any+(φ)−−−−−→ A(subs(any+(φ)))

(33)

∀ui ∈ gi, [M(ui)]
(ci;True)−−−−−−→ [Ni] , ∀ui ∈ gi, f(ui)

(any+i ,True)−−−−−−−−→ f ′i
⊥−→

or-set(xi ∈ gi)([M] : f, [Mi] : gi)
∪

i any
+
i−−−−−→ f ′

⊥−→
(34)

mgu(A, head(r))
@φ−−→ Aφ,

and-set(xi ∈ gi)(body(r)φ)
any+−−−→ and(f ′i,j)

⊥−→

A
any+φ−−−−→ A(subs(any+(φ)))

(35)

∀i,∀vj ∈ gj , [Mi(vj)]
(ci,j ;True)−−−−−−→ [Ni,j] , ∀fi ∈ fi, fi(vj)

(any+i,j ,True)−−−−−−−−−→ f ′i,j
⊥−→

and-set(xj ∈ gj)([Mi] : fi)

∪
i,j any

+
i,j−−−−−−−→ and(f ′i,j)

⊥−→
(36)

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 225

In the context of parallel rule transitions, we abuse the notations ‘or’ and ‘and’

to think them as if they were site names such that or(. . .) as well as and(. . .) were

site calls. Body(r) denotes their rule body and is a sequence of expression calls. The

transition rule (29) illustrates the proof procedure of atom A (a site call M or a

predicate P) using or-parallel rule r. If A matches the rule head of r the result is an

mgu (most general unifier) φ. A is then proved in form of A(subs(any+(φ))) where

any+ is the set of events happening during the proof procedure of body(r)φ (rule

body substituted with φ) where subs(any+(φ)) is the composition of all substitutions

contained in any+(φ). That is to say: though the proof procedure of A may raise a

set of side effects in any+ only the substitutions subs(any+(φ)) appear in the proved

form of A. All other events included in any+ (are produced in the inference process

as side effects and) will not affect the result. Note also that the guard before each

component is ‘just’ a site (no rule inference is permitted). Any effect produced by

the guard will be discarded.

Rule (30) says that if the guard [M] of any component f of the or-body is

successfully checked and f itself may perform a composite event any+ to become

f ′ and terminates then the or-body as a whole successfully terminates. Note that

although we write f as the first component in (30) the generality is not violated

because each component of the or-body can be repositioned to the first place without

affecting the semantics of or-parallel rules. Note also an important assumption: since

we allow all components ‘race’ in parallel only the events generated by the winner

(first terminating component) are effective. All other events possibly generated by

other components will be cancelled and have no influence on the result.

Transition rules (31) and (32) show a similar procedure as PR (1–2) with

regard to and-parallel rules. (31) is almost the same as (29). (32) requests all

components fi of the and-body produce events any+i to become f ′i and terminate

but also allows these fi be able to run in any interleaved order (the
∏

operator) to

assure the successful termination of the whole rule body.In this process the events of

all individual components are put together in form of
∪
i any

+
i in any interleaved

order to form the synthesized event set produced by the rule body.

Transition rules (33)–(36) repeat the same procedure for set-oriented parallelism

instead of simple or/and parallelisms where the only difference is that in this case we

have two indices: one index i for the expressions and another index j for set elements.

Thus the expressions to be evaluated form a matrix. It means roughly: for each tuple

of (x1, . . . , xn) ∈ g1 × . . .× gn, run the expression list fj(x1, . . . , xn) in or-parallelism

or and-parallelism. Also the event sets generated form a matrix. There aren’t too

many extra complicacies.

Regarding the implementation aspect, Knorc assumes that all branches of the

or-body and and-body are running in parallel. Since some of them may modify the

environment by performing site calls and therefore produce side effects affecting the

behavior of other branches the results become somewhat non-deterministic. However,

considering that the implementation environment often pose limitations to the scale

of parallelism Knorc leaves the freedom to the implementation by allowing a variety of

different degrees of parallelism from total sequentiality to total parallelity depending

on real system conditions. Note that unwanted results may appear such as ‘undefined’

results shown by the following:

226 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

Example 8.

Q :− and ([True] : Minus-one (account), [True] : Reciprocal-account (account))

A call to this rule will raise exception if account’s initial value is 1 and the

Minus-one expression will be performed first. To calculate the reciprocal value of

zero is meaningless. But in this case the premise of (32) is not satisfied therefore the

whole conditional transition rule is not violated.

5.4 Abstract knowledge source part semantics

We introduce the concept of (abstract) knowledge source (KS) which is a

structured value consisting of a value in the sense of Orc and a set of links pointing

to other KSs. A link is also called a pointer if we want to emphasize its directedness.

In this way the set of all knowledge sources form a network. Examples of such

networks are traffic networks, bio-informatics networks, Web site networks, etc. We

introduce two basic functions: link(s) denotes all links starting from the knowledge

source s, linking(s, p) denotes that knowledge source pointed to by the link p from

knowledge source s.

Table 11 Search rules on knowledge source network

p ∈ link(s)

M(s)
+p−−→M(linked(s, p))

(37)

p∈link(s),g
(!s;True)−−−−−→g′

f where x=s while linked(x,p):∈g
τ−→f [s/x]|f where x=linked(s,p) while linked(x,p):∈g′

(38)

p∈link(s),g
(!s;True)−−−−−→g′

f while x=s while linked(x,p):∈g
τ−→f [s/x] | f while x=linked(s,p) while linked(x,p):∈g′

(39)

To be more precise, sometimes we add the condition ‘s ∈ S’ to the premise to

mean that s should be a knowledge source (KS). But this is not necessary because

only KS may have links. (37) introduces a new base event +p to mean that performing

+p makes M(s) transformed to M(linked(s, p)). This function is particularly useful

for chained search. In the last section we have presented axioms for proving terms

in a rule. With the new base event +p we are now ready to extend these axioms for

the cases of linked search by redefining the general base event any as: any ∈ AN =

BE
∪
{@φ}

∪
{+p}. Rule (38) introduces a new structure for chained search, or more

precisely, for KS processing based on chained search. It benefits both keywordswhere

and while. The former specifies the current KS being processed, while the latter

specifies the continuing search on the KS network. More literally, it first performs the

expression f(s) where s is the starting KS. Provided that s has a link p pointing to

some other KS the next call to f is f(linked(s, p)) which then leads to further search.

However, this is a single line of search where each time only one of the next KS will

be fetched. Rule (39) extends the where–while structure to while–while structure

where the search trace is a tree. Each time when starting from a particular KS all

links from this KS to other KS will be searched.

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 227

5.5 Communication part semantics

As was pointed out by the authors of Orc the communication events in Orc are

limited to message exchange between parent–son processes. Sometimes this is not

powerful enough. Take the Web search as an example. Whenever we send out some

network spiders for searching and collecting useful information from Web sites their

traces represent different processes. To increase the efficiency of search, real time

communication between the network spiders is desired. But the spider processes are

sibling processes rather than parent–son processes. In order to solve this problem

we define in Knorc two communication primitives: the sender and the receiver. A

communication event transmits information from sender to receiver(s). Each time

when a sender wants to send information it establishes a fresh mailbox with a finite

set of keys as a wrapper for the information. Only processes having corresponding keys

are endowed with right to open the mailbox and access the information. Mailbox with

a particular key k̃ contains broadcast information which can be accessed by everyone.

Communication events appear only in parallel rules.

Table 12 Transition rules of knorc’s communication part

m fresh mailbox

send(v, k̄)
outm(v,k̄)−−−−−−→ send(x, k̄) | m#(v, k̄)

(40)

k0 ∈ k̄

receive(x, k0) | m#(v, k̄)
inm(v,k0)−−−−−−→ receive(v, k0) | m#(v, k̄ − {k0})

(41)

receive(x, k0) | m#(v, k̃)
inm(v,k̃)−−−−−−→ receive(v, k0) | m#(v, k̃) (42)

Table 12 lists the transition rules of Knorc’s communication part. Transition

rule (40) specifies the mechanism of information sending where the sender send(v, k̄)

establishes a fresh mailbox m#(v, k̄) containing a value v with the keys k̄. In this way

it generates an output event outm. In this process sender’s information v is consumed

(becoming a variable x without value). Transition rules (41) and (42) specify the

mechanism of information receiving where the parallel composition of mailbox and

receiver illustrates the typical scene of a distributed system which makes it possible

to transmit a value from mailbox to receiver. Each time the information is accessed

by receive (v, k0) the corresponding key k0 in the mailbox is consumed. The mailbox

becomes garbage after all keys in it are consumed except the broadcast key k̃ which

remains kept in the mailbox. It remains there to enable any further accesses.

Comparing these communication primitives with those proposed by Orc

demonstrates another novelty of Knorc’s communication facilities. In Knorc there

are no constant communication channels. Rather Knorc proposes to establish a

fresh mailbox for each instance of information sending. With a fresh mailbox it is

easy to specify the receivers and keys exactly as a finite group or as the whole public

228 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

(broadcast). It supports dynamic change of mailboxes. Also the secrete keys of

communication are dynamic such that one can have different keys for different

instances of communication. Remember the difference of communication channels

between π calculus and CCS, where the CCS channels are fixed while the π calculus

channels are dynamically changeable.

With these two new primitives for communication we extend the set of base

events once again to: any ∈ AN = BE
∪
{@φ}

∪
{+p}

∪
{inm(v, k), outm(v, k̄)}

Example 9. Two parallel processes found(s, key) and found(t, key) are

initiated to find the knowledge source (KS) containing ‘key’ in a collaborative way

where s and t are two different starting points. Each of the two processes is

represented as an or-parallelism consisting of a ‘find’ component for finding the

wanted KS and (if found) sending a signal to the other process, and a ‘receive’

component for receiving signal from the other process. There are two rules for

proving the ‘find’ component, one for sending the signal and terminates the process

when the KS with ‘key’ is found, and one goes over to the next connected KS and

continues the search.

Found(s, key) | Found(t, key);
Found(x, key) :− or(Find(x, key), receive(x, k));

Find(x, key) :− Contain(x, key), send(signal, k);

Find(x, key) :− Is-a(p, link(x)), F ind(linked(x, p), key).

By using our set-parallelism, the second ‘find’ rule can be modified to a more ambitious

one:

Find(x, key) :− and-set(p ∈ link(x))(Find(linked(x, p), key))

6 Conclusion

As we have illustrated above Knorc is a language or calculus combining

orchestration computation with logic programming. It combines also shared

memory concurrency and message passing concurrency. In this final section we will

summarize shortly what we have done and why we did it in this way.

First we want to mention the Orc calculus once again which stimulated our

idea of designing Knorc. We were in particular interested in Orc’s properties of site

calls as abstract form of Web service requests; its asymmetric sequential program

composition, value passing and partial concurrent execution; its tree form multi-

thread computation and asymmetric tree-like parent-son process communication; its

synchronizing and terminating facilities, and other interesting programming devices.

We appreciate its simple and concise form and its process algebra paradigm.

In the Knorc calculus we introduced following facilities to enhance the

representation power of Orc:

– All advanced properties of the Orc calculus;

– Combining process algebra with logic programming;

– Site call as remote Boolean procedure call;

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 229

– Horn-like logic rule inference and problem solving;

– Site call instantiation by Horn rule inference;

– Four types of parallel rules with concurrency, synchrony and non-determinacy;

– Network of abstract knowledge sources and search mechanism;

– Tupled values and broadband value transmission;

– Symmetric process-to-process communication;

– Peer to peer communication and broadcasting.

Among all these new facilities that of logic programming is in the central place.

There are at least four advantages that we get when introducing logic programming

in Knorc:

– Advantage 1: Enhance the structuredness of programming. In the early stage

of computer programming code and data were mixed together in the same

program which often made the program error prone and difficult to check its

correctness. It was only in the late sixty and early seventy of last century that

structural programming was proposed. The separation of data from code was

one of its principles. Logic programming is the means by which Knorc could

separate knowledge (many details) from expressions. That is to separate

Knorc’s declarative part from its imperative part. A straightforward

consequence is that an otherwise complicated program could become more

concise and readable.

– Advantage 2: Enhance the knowledge and program reuse. Separating knowledge

from expressions has the additional benefit that many parts of a routine Knorc

program could be easily reused as shown by example 1.

– Advantage 3: Logic programming (based on Herbrand Semantics and resolution

principles) and process algebra (based on universal algebra semantics) are two

very different programming paradigms. To combine them in one calculus is a

serious challenge to language designers, which stimulated researches of various

interests. In particular it was not easy to define its formal semantics.

– Advantage 4: Orc has a strict law that only fully instantiated expressions

could be fired. This is not very comfortable for programmers in some

circumstances. It is for instance the case if the instantiation has to be

calculated with a complicated procedure. Another situation is when the

instantiation is non-deterministic and has multiple possibilities.

It may be interesting to make a (somewhat superficial) analytics on the various

Orc related works introduced in section 2 and their relations to Knorc. Though they

seem to be completely orthogonal to each other in the sense that no extension of

Orc functionally covers everything of another extension, all these extensions can be

aligned in a hierarchy of levels. At the lowest is the infrastructure level which

provides fundamental support to Orc to have a reliable implementation. Examples

230 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

are Dist-Orc (using socket semantics to refine communication semantics) and cOrcS

(data and program integrity as security). Next is the platform level which provides

extra functionalities and utilities for supporting Orc programming in some specific

aspects. Examples are Ora (transactional Orc, guaranteeing full-fledged

implementation of transactional activities) and Orc-X (introducing XML data

structure with query function). Also the knowledge source data structure of our

Knorc belongs to this category. Higher than the platform level is the programming

methodology level which provides new programming structures of orchestration.

The introduction of logic programming in Knorc should be a typical example in this

direction which brings a new programming style of orchestration. The last and

highest level in this hierarchy is the system level which provides the possibility of

combining Orc with some non-orchestration systems. An example of that is the

Korc language mentioned earlier in this paper[19] which combines orchestration and

choreography. Note that the division of this hierarchy is not absolute. The

knowledge source data structure in Knorc is more abstract vs. XML in Orc-X which

is concrete and can be considered as one of the implementation forms of the former.

On the other hand we are also looking forward to a more perfect integration of

orchestration with logic programming such that Knorc will become a system level

extension of Orc.

In next future we will refine further the Knorc calculus in particular its

operational semantics. We will also study other forms of Knorc’s formal semantics.

Last but not least we are starting to implement Knorc on the basis of Orc.

Acknowledgement

I thank Yu Huang for reading through my manuscript, finding notational

inconsistency problems and helping correcting typing errors and transforming it to

LATEX format. I thank anonymous reviewers for pointing out various structural and

representational problems so that I could make essential improvement of this paper.

References

[1] AlTurki M, Meseguer J. Real-time rewriting semantics of Orc. In: Leuschel M, Podelski A.

eds. Proc. of 9th ACM SIGPLAN Conference on Principles and Practice of Declarative

Programming. 2007. 131–142.

[2] AlTurki M, Meseguer J. Reduction semantics and formal analysis of Orc programs. Electronic

Notes in Theoretical Computer Science, 2008, 200(3): 25–41.

[3] AlTurki M, Meseguer J. Dist-Orc: A rewriting-based distributed implementation of Orc with

formal analysis. In: Olvecaky PC, ed. First International Workshop on Rewriting Techniques

for Real-Time Systems (RTRTS’10). 2010. EPTCS 36. 26–45.

[4] Campos DM, Barbosa LS. Implementation of an orchestration language as a Haskell domain

specific language. Electronic Notes in Theoretical Computer Science 255. 2009. 245–64.

[5] Choi Y, Garg A, Rai S, Misra J, Vin H. Orchestrating computations on the world-wide Web.

In: Monien RFB, ed. Parallel Processing: 8th International Euro-Par Conference, Vol 1, LNCS

2400. Springer. 2002. 1–20.

[6] Cook W, Misra J. A structured orchestration language. http://www.cs.utexas.edu/users/

wcook/Projects/orc, 2009.

[7] Coons KE. Transactional Orc. https://orc.csres.utexas.edu/papers/coonske sp08.pdf[Student

Report], University of Texas at Austin, 2008.

[8] Gregory S. Parallel programming in PARLOG. Addison-Wesley, 1987.

Ruqian Lu: Knorc calculus and its formal semantics – to honor my ... 231

[9] Hoare T, Menzel G, Misra J. A tree semantics of an orchestration language. In: Broy M, ed.

Proc. of NATO ASI series. 2004. 331–350.

[10] Kitchen DW. Orchestration and atomicity[PhD. Thesis], University of Texas at Austin, 2013.

[11] Kichen DW, Cook W, Misra J. A language for task orchestration and its semantic properties.

CONCUR, LNCS 4137. 2006. 477–491.

[12] Kitchen DW, Quark K, Cook W, Misra J. The Orc programming language. LNCS 5522. 2009. 1–

25.

[13] Lu R. Korchestration and the Korc calculus. 7th International conference on KSEM, LNAI

8793, Keynote Abstract, 2014.

[14] Marti-Oriet N, Meseger J. Rewriting logic, roadmap and bibliography. Theoretical Computer

Science, 2002, 285(2): 121–154.

[15] Misra J. Computation orchestration: a basis for wide-area computing, In: Broy M, ed. Proc. of

NATO ASI series. 2004. 285–330.

[16] Misra J, Cook WR. Computation orchestration: a basis for wide-area computing. JSSM, 2006,

6(1): 83–110.

[17] Morton K. Orc-X: Combining Orchestrations and XQuery[Thesis], University of Texas at Austin,

2008.

[18] De Nicola R, Ferrari G, Pugliese R. KLAIM: A kernel language for agents interaction and

mobility. TSE, 1998, 24(5): 315–330.

[19] De Nicola R, Margheri A, Tiezzi F. Orchestrating tuple-based languages. LNCS 7173. 2012. 160–

178.

[20] Nicolas C, Serrano, Loquori L. Hop and Orc: Blending orchestration and multi-tier

programming languages. TR. INRIA. 2010. http://www-sop.inria.fr/members/Cyprien.

Nicolas/uns/m2/Nicolas-Internship-report.pdf

[21] Quark A. Secure information flow in Orc (draft)[Student Report], University of Texas at Austin,

2009. https://orc.csres.utexas.edu/papers/quark sif 09 draft.pdf.

[22] Shapiro E, ed. Concurrent Prolog, MIT Press, 1986.

[23] Talia D. Survey and Comparison of PARLO and Concurrent Prolog, SIGPLAN Notice, 1990,

25(1): 33–42.

[24] Thywissen JA. Secure information flow in the Orc concurrent programming language.

https://orc.csres.utexas.edu/papers/Secure-Information-Flow-Orc.pdf [Student Report],

University of Texas at Austin, 2009.

[25] Wu Y. An introduction to BPEL standard and its extensions. http://www.soberit.hut.fi/T-

86/T-86.5161/2007/BPEL final report yanbowu.pdf

[26] Yew L, Young WD, Cook WR. cOrcS: Continuation of Orc Security with static integrity

checking. https://apps.cs.utexas.edu/tech reports/reports/tr/TR-2113.pdf, 2012

