
Int J Software Informatics, Volume 9, Issue 2 (2015), pp. 259–277 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

c⃝2015 by ISCAS. All rights reserved. Tel: +86-10-62661040

Similarity-Based Diff, Three-Way Diff and Merge

Serge Autexier

(German Research Centre for Artficial Intelligence (DFKI), Bremen, Germany)

Abstract Semi-structured documents and data pervade modern workflows in all areas.

Collaborative work and version management rely on effective, automatic difference analysis

and three-way difference analysis tools. In our effort to develop a three-way difference

analysis for tree-structured documents we developed a kernel three-way difference

algorithm which extends the equality-based procedures, such as GNU diff3, by considering

the similarity of documents in the difference analysis as well as to ignore the order of data

if that is semantically suitable. As a result we obtain difference analysis algorithms that

can be more fine-tuned to the application domain. Moreover, the equality-based

counter-parts of our three-way difference analysis algorithms has the idempotency

property, which the current three-way diff algorithms lacks.

Key words: version control; collaborative work; similarity of sequences and multisets;

semi-structured data and documents

Autexier S. Similarity-based diff, three-way diff and merge. Int J Software Informatics,

Vol.9, No.2 (2015): 259–277. http://www.ijsi.org/1673-7288/9/i217.htm

1 Introduction

Collaborative working on and version management of digital documents and

data requires good automatic difference analysis and merge algorithms. Standard

algorithms for difference analysis for text documents and sequences of atomic data

elements use dynamic programming[8] to compute common subsequences between

two or more subsequences. Similarly, the problem has been studied for

tree-structured and even general graph structured models in the context of

programming languages[9] and domain-specific models[11,14,18]. In previous work[3]

we developed difference analysis algorithms for XML documents based on the

similarity of subtrees for which the notion could be customized. That has been

extended to develop a three-way difference algorithm for XML-trees, similarily

based on the similarity of subtrees, and which has been applied and tested in

Refs. [1,2]. The central parts of this algorithm are similarity-based three-way

difference analysis procedures for mixed ordered and unordered sequences, which we

present in this article and compare with existing three-way difference analysis

algorithms for sequences.

The most well known implementation is the GNU diff-algorithm[7] based on

Ref. [16]. Merging of documents is considered either as merging variants of a

document based on a common ancestor document or simply merging two documents

This work is sponsored by German Federal Ministry of Education and Research (BMBF) under grant

FKZ 01IW13001 (SPECIFIC)
Corresponding author: Serge Autexier, Email: serge.autexier@dfki.de
Received 2015-01-11; Revised 2015-04-29; Accepted 2015-05-15.



260 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

without a common ancestor. The first problem class is known as a three-way diff

and the methods to tackle the problem fall into two categories: the operational

approach tries to merge the sequence of edit-operations performed to obtain the

different variants and the state-based approach only considers the documents and is

typically based on the difference analysis between the documents. The most

well-known problem here is the GNU diff3 algorithm[17]. Though it has been and

still is extensively used its properties have only been studied in 2007 in Ref. [10]

showing that three properties one may intuitively expect to hold for diff3 actually

do not hold. Furthermore, as digital data and documents beyond pure sequences of

atomic elements are more and more widespread, tree-based difference and merge

algorithms were developed[5,13,12]. In Ref. [3] we considered the explicit use of

similarities between semi-structured documents to compute subsequences of two

documents that are most similar to each other and does not require the identified

elements to be equal. In that work we also addressed the similarity-based difference

analysis problem for sequences, where the order of the elements does not matter, i.e.

for multisets. In neither work we considered the similarity-based three-way

difference analysis. The contributions of this article are (1) an intuition how

matters change when moving from equality to similarity, (2) a coherent, uniform

solutions for similarity-based difference analysis, three-way difference analysis and

merge for lists and multisets, (3) solutions for mixed sequences where some parts are

to be considered as lists and others as multisets, and (4) we show that our

equality-based three-way diff algorithms for sequences has the idempotency

properties, which does not hold for GNU diff3 and alike.

The article is organised as follows: In Section 2 we provide some motivations for

using similarity instead of equality for difference analysis of sequences of structured

objects. Section 3 provides intuitions how the problem changes when considering

similarities and introduces coherent formulations of the difference analysis between

two versions of documents depending on whether they are lists or multisets and

show that the similarity-based approach is a conservative extension of the

equality-based approach. Section 4 presents the four basic three-way difference

analysis algorithms as well as the mixed version and the derivation of a merge

algorithm for documents without common ancestor. It also includes the proof of the

idempotency of the equality-based three-way difference analysis for lists.

2 Motivation to Use Similarity instead of Equality

When comparing two unstructured objects, typically their syntactic equality is

considered because it is sufficient to entail semantic equality. For instance, two

numbers are semantically equal, if they are syntactically equal; similarly for

characters. When dealing with structured objects, things change: syntactical

equality still entails semantic equality, but two semantically equal objects are not

necessarily syntactically equal. For instance, consider arithmetic expressions: with

some background knowledge about + the two expressions 1 + 2 and 2 + 1 are

semantically equal, but not syntactically equal. In this paper we are interested in

developing difference analysis algorithms, that do not distinguish semantically equal

structured objects. For instance, consider SVG[6] expressions describing rectangles

X and Y



Serge Autexier: Similarity-based diff, three-way diff and merge 261

X: <rect width=”300” height=”100” style=”fill:red;stroke−width:3;stroke:black”/>
Y: <rect width=”300” height=”100” style=”fill:blue;stroke−width:3;stroke:black”/>
Z: <rect width=”200” height=”100” style=”fill:green;stroke−width:3;stroke:black”/>

If we are only interested in the shapes, then the first two rectangles are equal. If

we are also interested in the colors, then they are no longer equal, but still more similar

than they are with the rectangle Z. In that case, when comparing two documents

wrt. their differences, similar structures must be recognised. We will now briefly

formalize the properties and relationships between syntactic and semantic equality

and similarity.

Given two objects o, o′, we denote the syntactic (resp. semantic) equality of

these objects by oo′ (oo′). Both relations are reflexive, commutative, and transitive.

Moreover, it must hold that if oo′ implies oo′. The similarity of two objects o, o′ is

oo′ ∈ [0 . . . 1] such that oo′ implies oo′ = 1. If oo′ = 0 then o and o′ are dissimilar.

3 SDiff: Most Similar Subsequences and Multi-Subsets

To determine the longest common subsequence of two sequences s and s′ is a

standard problem which has an efficient solution using dynamic programming. The

result is a sequence c which is contained as a subsequence in both s and s′. Moving

from equality of objects in the sequence to similarity changes the problem slightly,

because there is no longer one sequence which occurs in both s and s′, but

subsequences c and c′ which are respectively subsequences of s and s′, and which

have a maximal similarity. As an example consider the two sequences

s := all yellow birds can fly

s′ := some red bird can fly

The longest common subsequence of both is “can fly”. The edit script from s to s′ is

−all,+some,−yellow,+pink,−birds,+bird, can, fly

where −W denotes to remove the word W , +W denotes to add word W and words

not prefixed by + or − remain in place.

Now we define the similarity of two words based on twice the length of the

longest subsequence of characters divided by the sums of the lengths of both words.

Then the similarity of fly and fly is 1.0, the similarity of yellow and red is

#(e)/(#(yellow) + #(red)) = 1/9 = 0.11, where #(w) denotes the length of the

word w, and the similarity of bird and birds is 2 × #(bird)/(#(bird)

+#(birds)) = 8/9 = 0.88. Note that although the lengths of the common

subsequences of both red and some with yellow are both 1, red is preferred because

of the smaller denominator #(yellow) + #(red) compared to #(yellow) + #(some).

Now the subsequence of s that is most similar to a subsequence of s′ is “yellow birds

can fly” and the respective subsequence of s′ is “red bird can fly”. The edit script

from s to s′ now also has to accommodate those words, that are similar but not

equal. In the edit script we prefix these with U followed by the new version. This

results in the following edit script

−all,+some,Ured,Ubird, can, fly



262 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

The result of applying this edit script to s is a sequence which is syntactically

equal to s′. This is because syntactic and semantic equalities coincide for the words

in this example. The situation changes for instance if we add arithmetic expressions

to the language and consider the sequences

s := (1 + 3) equals 4

s′ := (3 + 1) equals 4

Here (1 + 3) and (3 + 1) are objects and we include as semantics the commutativity

property of +. Now both expressions are semantically equal but syntactically

different. As similarity notion we use the same for words as before and the largest

common subset of operands of two arithmetic expressions to acknowledge the

commutativity of +. As a result, the subsequences of s and s′ that are most similar

are s and s′ themselves. The edit script is also empty if we consider semantic

equality of expressions, namely:

(1+3), equals, 4

Not considering the semantic equality, but keeping the same similarity notion

would result in the edit script

U(3+1), equals, 4

to obtain a sequence which is syntactically equal to s′. Depending on the situation

and the analysis to conduct either approach can be sensible.

Summarizing this discussion, when moving from equality to similarity when

comparing two sequences s and s′ one has two degrees of freedom: (i) the choice of

the similarity notion, and (ii) the choice to consider semantic equality compatible

with the similarity notion or not. Furthermore, the goal is not to find one sequence

which is a subsequence of both s and s′. Instead, the goal is to find subsequences of

s and s′ of equal length and which are maximally similar. Finally, if one would opt

for using semantic equality when comparing s and s′, then the application of the

computed edit script to s results in a sequence that is semantically equal, but not

necessarily syntactically equal to s′. Throughout the rest of this paper we stick to

syntactic equality, though.

3.1 Formalization

In this section we formalize sequences and the similarity-based common

subsequences depending on whether they are lists or multisets. Our notion of

sequences is explicitly formulated over an arbitrary subset of the natural numbers as

index sets rather than just lists of elements of some basic domain. This subsumes

the standard approach and enables for a uniform treatment using morphisms

identifying elements in the sequences.

Definition 1 (Sequence). Let I be a set of positive natural numbers and

si, i ∈ I be elements of a given domain D. Then s := (si)i∈I denotes the sequence

si1 . . . sin such that |I| = n and ∀1 6 k < l 6 n holds ik < il. The length of the

sequence is the cardinality of I. The set of sequences is S.



Serge Autexier: Similarity-based diff, three-way diff and merge 263

The equality of two sequences now depends on whether they are lists or

multisets. We also provide the equality for mixed sequences, where some parts are

to be considered as a list and other parts a multiset. This shows the benefit of

building the notion of sequences over arbitrary index sets. Examples for sequences,

where the subsequence comparison can benefit from a mixed treatment are:

– In LATEX documents mostly the order of the lines and environments matter.

However, for environments that can float like figures or tables explicitly declared

as such, the order and relation to the rest of the text could be ignored in order

to find a common subdocument

– Similarly, in the programming language Scala in class declarations, variables can

be declared and assignment throughout the whole class and the order matters.

However, the method declarations are independent of these declarations and

assignments and their order does not matter.

We now define the different equality notions for sequences, depending on whether

we consider them as lists, as multisets or as being mixed of both.

Definition 2 (Sequence Equalities). Let s := (si)i∈S and t := (tj)j∈T be

sequences.

(i) Sequence Equality: s and t are sequence equal, iff there exists a total bijection

µ : S → T such that ∀i ∈ S.si = tµ(i) and ∀i, j ∈ S.i < j ⇒ µ(i) < µ(j).

(ii) Multiset Equality: s and t are multiset equal, iff there exists a total bijection

µ : S → T such that ∀i ∈ S.si = tµ(i).

(iii) Mixed Equality: Let SL⊎SM = S and TL⊎TM = T be partitionings. Then s and

t are mixed equal wrt. that partitioning iff (si)i∈SL and (tj)j∈TL are sequence

equal and (si)i∈SM
and (tj)j∈TM

are multiset equal.

Subsequently, we also define the similarities of two sequences.

Definition 3 (Similarity). A similarity on elements of a domain D is a

total binary function sim : D2 → [0, 1] such that for all a, b ∈ D with a = b holds

sim(a, b) = 1. The equality on D induces the canonical similarity on D defined by

sim=(u, v) :=

{
1 if u = v

0 otherwise

Definition 4 (Similarity of Sequences). Let s := (si)i∈S and t := (tj)j∈T

be sequences, sim a similarity notion on elements, and µ : S ↪→ T a partial bijection

of domain Dom(µ) and image Im(µ). The similarity of s and t wrt. µ and sim is

simµ(s, t) :=
2

|S|+ |T |+ 2

1 +
∑

i∈Dom(µ)

sim(si, tµ(i))


Having set the stage, we define the common subsequence notions dependent on

whether we consider equality or similarity and whether the sequences are lists or

multisets (see also Fig. 1).



264 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

Equality Similarity

Lists longest common most similar subsequence,

subsequence, Definition 5 Definition 6

Multisets largest multi-subset, most similar multi-subset,

Definition 7 Definition 8

Mixed Lists/Multisets largest mixed common most similar common

subsequence, Definition 9 subsequence, Definition 10

Figure 1. The four common subsequence notions

Definition 5 (Longest Common Subsequence). Let s := (si)i∈S and

t := (tj)j∈T be sequences. A partial mapping µ : S ↪→ T is a common subsequence

of s and t if it is a partial bijection of length |Dom(µ)| such that ∀i, j ∈ Dom(µ)

holds: i < j iff µ(i) < µ(j). µ is a longest common subsequence iff all other common

subsequences have size less or equal to |Dom(µ)|.
Definition 6 (Most Similar Subsequence). Let s := (si)i∈S and t :=

(tj)j∈T be sequences and sim a similarity notion on elements. A partial mapping

µ : S ↪→ T is a similar subsequence of s and t if it is a partial bijection of similarity

simµ(s, t) such that (i) ∀i ∈ Dom(µ) holds: sim(si, tµ(i)) > 0, and (ii) ∀i, j ∈ Dom(µ)

holds: i < j iff µ(i) < µ(j). µ is a longest common subsequence iff all other similar

subsequences have similarities less or equal to sim(µ).

Definition 7 (Largest Multi-Subset). Let s := (si)i∈S and t := (tj)j∈T

be sequences. A partial mapping µ : S ↪→ T is a multi-subset of s and t if it is a

partial bijection of length |Dom(µ)|. µ is a largest multi-subset iff all other common

subsequences have size less or equal to |Dom(µ)|.
Definition 8 (Most Similar Multi-Subset). Let s := (si)i∈S and t :=

(tj)j∈T be sequences and sim a similarity notion on elements. A partial mapping

µ : S ↪→ T is a similar multi-subset of s and t if it is a partial bijection of similarity

simµ(s, t) such that ∀i ∈ Dom(µ) holds: sim(si, tµ(i)) > 0. µ is a most similar multi-

subset iff all other similar multi-subsets have similarities less or equal to sim(µ).

Based on the notions for list-like sequences and multiset sequences, we can define

the notions for mixed sequences which have a list-like and a multiset part.

Definition 9 (Largest Mixed Common Subsequence). Let s := (si)i∈S

and t := (tj)j∈T be sequences with partitions SL ⊎ SM = S and TL ⊎ TM = T .

A partial mapping µ : S ↪→ T is a mixed common subsequence of s and t if µ|Ss

(resp. µ|SM
) is a common subsequence of (si)i∈SL and (tj)j∈TL (resp. a common

multi-subset of (si)i∈SM
and (tj)j∈TM

) of size Dom(µ). It is a largest mixed common

subsequence if any other mixed common subsequence has smaller or equal size.

Definition 10 (Most Similar Mixed Common Subsequence). Let s :=

(si)i∈S and t := (tj)j∈T be sequences with partitions SL ⊎SM = S and TL ⊎ TM = T

respectively, and sim a similarity notion on elements. A partial mapping µ : S ↪→ T

is a similar mixed common subsequence of s and t if µ|SL
(resp. µ|SM

) is a similar

subsequence of (si)i∈SL
and (tj)j∈TL

(resp. a similar multi-subset of (si)i∈SM
and

(tj)j∈TM
) of similarity simµ(s, t). It is a most similar mixed subsequence of any other

similar mixed subsequence has smaller or equal similarity.



Serge Autexier: Similarity-based diff, three-way diff and merge 265

Finally, we show that the similarity-based notions are conservative extensions of

the equality-based notions, which enables us to consider the equality-based versions

as special cases of the similarity-based versions.

Lemma 1 (Conservativity). The similarity-based notions of common

subsequences are conservative extensions of the equality-based notions. That is let

s := (si)i∈S and t := (tj)j∈T be sequences and µ : S ↪→ T a partial bijection. Then

it holds:

(i) If µ is common subsequence of s and t, then it is a similar subsequence of s and

t of similarity 2+2|Dom(µ)|
2+m+n wrt. the canonical similarity.

(ii) If µ is multi-subset of s and t, then it is a similar multi-subset of s and t of

similarity 2+2|Dom(µ)|
2+m+n wrt. the canonical similarity.

(iii) If µ is a mixed common subsequence µ of s and t, then it is a similar mixed

common subsequence of s and t of similarity 2+2|Dom(µ)|
2+m+n wrt. the canonical

similarity.

Proof: (i) First, it holds for all i ∈ Dom(µ) that si = tµ(i). Thus, by definition

sim(si, tµ(i)) = 1, which is greater than 0. Second:

sim(s, t) =
2

m+ n+ 2

2 +
∑

i∈Dom(µ)

sim(si, tµ(i))

 =
2

m+ n+ 2

1 +
∑

i∈Dom(µ)

1


=

2

m+ n+ 2
(1 + |Dom(µ)|) = 2 + 2|Dom(µ)|

m+ n+ 2

�
Corollary 1. Let s and t be two sequences of equal length n and µ be

their longest common subsequence (resp. largest multi-subset and longest mixed

common subsequence wrt. fixed partitions) such that |Dom(µ)| = n. Then µ is a

most similar subsequence (resp. most similar multi-subset and most similar mixed

common subsequence) of s and t and of similarity 1.

Proof: From Lemma 1 follows that simµ(s, t) =
2+2|Dom(µ)|

2+n+n . Since Dom(µ) = n it

follows simµ(s, t) =
2+2n

2+n+n = 1. �

4 SDiff3: Similarity-Based State-Based Synchronizer

Typically the result of three-way difference analysis between two variants a and

b with repsect to a common ancestor document o is a merged document o′ possibly

containing conflict information. We follow the approach taken in[10] and consider a

three-way difference analysis algorithm to have three outputs: a new version a′ for a,

where all non-conflicting changes from a are included in b′ and o′, all non-conflicting

changes of b included in o′ and a′. o′ contains all non-conflicting changes from a and

b and the old state from o for conflicting parts. We denote the triples (a, o, b) and

(a′, o′b′) as configurations and a three-way difference analyser computing (a′, o′, b′)

from (a, o, b) is a synchronizer.



266 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

Formally, following[10], a configuration is a triple (a, o, b) ∈ S × S × S usually

written in the more suggestive notation a← o→ b to emphasize, that o is the common

origin of a and b.

A synchronizer is a function that maps an input configuration a ← o → b to

a new configuration a′ ← o′ → b′. a ← o → b ⇒ a′ ← o′ → b′ is a run of the

synchronizer; it is conflict-free if a′ = o′ = b′.

We will introduce four synchronizers (see Fig. 2), depending on whether the

sequences are lists or multisets and whether the elements are to be compared by

equality or by similarity. The algorithm sDiff3=L for lists and equality comparison is

comparable to the standard diff3-algorithm studied in [10]. The way our

synchronization works is to take into account parts of the similarity between the two

variants. It is thus different from the standard diff3 and in contrast to that sDiff3=L
is idempotent.

Equality Similarity

Lists sDiff3=L Section 4.1 sDiff3∼L Section 4.3

Multisets sDiff3=S Section 4.2 sDiff3∼S Section 4.4

Figure 2. The four synchronizer functions

4.1 Equality-based sequence synchronizer

This is a synchronizer which is a variant of the standard diff3 algorithm from[17].

In contrast to this ours uses the similarity between the two variants a and b as guidance

for the common subsequence mapping between o and a resp. o and b. This is achieved

by taking the longest common subsequence cab between a and b and computing the

longest common subsequence cinit between o and cab. Now we consider only common

subsequence between o and a (resp. b), which contain cinit. This is in contrast to

diff3, which considers the common subsequence between o and a and resp. o and b

independently. Of course the longest common subsequence obtained in our approach

may be shorter. On the other hand we gain the advantage that the alignment of

parts that have remained unchanged between o, a and b is better in general. Once

the alignment is obtained, we identify conflicts and the elements added or deleted

locally in one of the variants without conflicting with anything else. The conflicts are

those subsequence that have to belong together and which are different in a and b

and were different in o.

This whole approach of obtaining the alignment is crucial to our variant of three-

way diff and formalized as follows:

Definition 11 (Subsequence Alignment). Let

a = (aj)j∈A, o = (oi)i∈O, b =

(bk)k∈B be sequences. An alignment α = ⟨µO, µA, µB⟩ from o to a and b consists of

three strictly increasing morphisms µO : O → N, µA : A → N and µB : B → N such

that it holds

µO(i) = µA(j)⇒ oi = aj

µO(i) = µB(k)⇒ oi = bk



Serge Autexier: Similarity-based diff, three-way diff and merge 267

µA(j) = µB(k)⇒ aj = bk

The alignment image Im(α) is Im(µO) ∪ Im(µA) ∪ Im(µB) and its size is the

cardinality of its image.

The conflict sets Conflicts(α) of the alignment are all largest convex subsets of

Im(α) which are unions of pairwise disjoint non-empty convex subsets of Im(µO),

Im(µA), and Im(µB) (AddAddConflicts).

The local additions addA(α) of A (resp. addB(α) for B) is the subset of Im(µA)

(resp. Im(µB)) which is disjoint from Im(µO), Im(µB) (resp. Im(µA)), and any

conflict set.

The deletion set delO(α) of O is the subset of Im(µO) which is disjoint from

Im(µA) and Im(µB).

The induced configuration a′ ← o′ → b′ is defined by

M = (Im(µO) ∩ Im(µA) ∩ Im(µB)) ∪ addA(α) ∪ addB(α)

O′ = M ∪
∪

C∈Conflicts(α)

(C ∩ Im(µO))

A′ = M ∪
∪

C∈Conflicts(α)

(C ∩ Im(µA))

B′ = M ∪
∪

C∈Conflicts(α)

(C ∩ Im(µB))

and o′ = (o′i)i∈O′ , a′ = (a′j)j∈A′ and b′ = (b′k)k∈B′ where

o′i =


oµ−1

O (i) if i ∈ Im(µO) ∩ Im(µA) ∩ Im(µB)

oµ−1
O (i) if i ∈

∪
C∈Conflicts(α)(C ∩ Im(µO))

aµ−1
A (i) if i ∈ addA(α)

bµ−1
B (i) if i ∈ addB(α)

a′j =

{
o′j if j ∈M

aµ−1
A (j) if j ∈

∪
C∈Conflicts(α)(C ∩ Im(µA))

b′k =

{
o′k if k ∈M

bµ−1
B (k) if k ∈

∪
C∈Conflicts(α)(C ∩ Im(µB))

Based on that notion of alignment we can define our equality-based three-way

diff for lists as follows.

Definition 12 (sDiff3=L for Sequences). Let a = (aj)j∈A, o = (oi)i∈O, b =

(bk)k∈B be sequences. Let µAB be the most similar subsequence for a and b, and

µOSubA (resp. µOSubB) be the most similar subsequences of o and a|Dom(µAB) (resp.

b| Im(µAB)). Furthermore, let µOA (resp. µOB) be the most similar subsequence of O

and A (resp. B) which extends µOSubA (resp. µOSubB). Finally, let α = ⟨µO, µA, µB⟩
be the smallest alignment such that

µO(i) = µA(j)⇔ µOA(i) = j



268 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

µO(i) = µB(k)⇔ µOB(i) = k

µA(j) = µB(k)⇔ µAB(j) = k

The result of the SDiff3 algorithm for sequences is the configuration induced by α.

Example 4.1. As a first example consider der sequences a = [1, 4, 3, 2, 9],

o = [1, 2, 3, 7, 9] and b = [1, 3, 6, 8, 9]. The application of the standard diff3 algorithm

yields the following alignment

a 1 4, 3, 2 9

o 1 2, 3, 7 9

b 1 3, 6, 8 9

This has a large conflict between 4, 3, 2 in a, 2, 3, 7 in o and 3, 6, 8 in b due to the

switch of 2 and 3 from o to a. The reason is, that the 3 is not part of the three-way

matching, because matching o and a choses the “wrong” subsequence [1, 2, 9], while

from o to b only [1, 3, 9] can be selected.

In our sDiff3=L considering the longest common subsequence [1, 3, 9] between a

and b is used to guide the mapping from o to a and b. This is done by first computing

the common subsequence between o and [1, 3, 9], which is in this case again [1, 3, 9].

This is considered as the fixed part to compute the mappings from o to a and b. This

results in the following alignment

a 1 − 4 3 − 2 − − 9

o 1 2 − 3 7 − − − 9

b 1 − − 3 − − 6 8 9

This creates only a conflict between 7 in o, 2 in a and 6, 8 in b yielding the induced

configuration 1, 4, 3, 2, 9← 1, 4, 3, 7, 9→ 1, 4, 3, 6, 8, 9. The edit script for o is

1,−2,+4, 3,−7,C < [2], [6, 8] >, 9

where C < [2], [6, 8] > denotes the conflict of having the sequence [2] in one variant

and the sequence [6, 8] in the other variant.

As a second example consider the sequences a = [1, 4, 3, 6, 9], o = [1, 2, 3, 9] and

b = [1, 3, 8, 9]. The run of the synchronizer sDiff3=L on a← o→ b yields the alignment

a 1 − 4 3 6 − 9

o 1 2 − 3 − − 9

b 1 − − 3 − 8 9

This creates no conflict between 6 in a and 8 in b yielding the edit script

1,−2,+4, 3,+6,+8, 9

Note that the diff3 algorithm returns a conflict between 6 and 8 and the non-conflicting

result of our synchronizer yields the analogous results than the ELAM algorithm[9].

4.1.1 Properties



Serge Autexier: Similarity-based diff, three-way diff and merge 269

The standard diff3 algorithm is not idempotent as shown in Ref. [10]. An

example are the sequences a = [1, 2, 4, 6, 8], o = [1, 2, 3, 4, 5, 5, 5, 6, 7, 8], and

b = [1, 4, 5, 5, 5, 6, 2, 3,

4, 8]. Using the standard diff3 twice results in

[1, 2, 4, 6, 8]← [1, 2, 3, 4, 5, 5, 5, 6, 7, 8]→ [1, 4, 5, 5, 5, 6, 2, 3, 4, 8]

⇒[1, 2, 4, 6, 8]← [1, 2, 3, 4, 6, 7, 8]→ [1, 4, 6, 2, 3, 4, 8]

⇒[1, 4, 6, 2, 4, 6, 8]← [1, 4, 6, 2, 4, 6, 7, 8]→ [1, 4, 6, 2, 4, 8]

which shows, that diff3 is not idempotent. Using sDiff3=L we have a conflict-free run

[1, 2, 4, 6, 8]← [1, 2, 3, 4, 5, 5, 5, 6, 7, 8]→ [1, 4, 5, 5, 5, 6, 2, 3, 4, 8]

⇒[1, 4, 6, 2, 3, 4, 8]← [1, 4, 6, 2, 3, 4, 8]→ [1, 4, 6, 2, 3, 4, 8]

The reason for the conflict-free run is again because the longest common subsequence

[1, 4, 6, 8] is used as a guidance for the mapping between o and a resp. b.

As an example illustrating that it also holds for non-conflict-free runs consider

the configuration from the first example in Example 4.1. A second run of sDiff3=L is

1, 4, 3, 2, 9← 1, 4, 3, 9→ 1, 4, 3, 6, 8, 9⇒ 1, 4, 3, 2, 9← 1, 4, 3, 9→ 1, 4, 3, 6, 8, 9

which leaves the configuration unchanged.

Theorem 4.1. (Idempotency) The algorithm sDiff3=L is idempotent.

P roof: Let a ← o → b ⇒ a′ ← o′ → b′ ⇒ a′′ ← o′′ → b′′. We show that a′′ = a′,

o′′ = o′ and b′′ = b′.

First, for a′ ← o′ → b′ being obtained from a ← o → b by an alignment α we

know that the longest common subsequence µA′B′ between a′ and b′ is the one with

indexes from M by construction. Furthermore, the longest common subsequence of

o and µA′B′ also has domain M . Hence, for the smallest subsequence alignment α′

holds that (i) the conflicts sets Conflict(α′) are identical to Conflicts(α), and (ii) the

local additions of A′ and B′ are empty. Hence, A′′, O′′ and B′′ are identical to A′,

O′ and B′ and thus o′′ = o′, a′′ = a′, and b′′ = b′. �

4.2 Equality-based multiset synchronizer

The next synchronizer is for multisets. The key idea adapted from the previous

list-like version consists of using the intersection between the variants and then

consider the intersection between o and that intersection. This is actually the

intersection of o, a and b. Since we have multisets, there are no conflicts when

computing the merge. However, in order to emphasize the relationship to the

solution for list-like sequences we use an analogous alignment formulation. This will

also be useful when considering similarities, where we will have conflicts in general

and the mapping obtained from the alignment is necessary to determine the new

configuration.

Definition 13 (Multi-Subset Alignment). Let

a = (aj)j∈A, o = (oi)i∈O, b = (bk)k∈B be sequences. A multi-subset alignment

α = ⟨µO, µA, µB⟩ from o to a and b consists of three morphisms µO : O → N,
µA : A→ N and µB : B → N such that it holds

µO(i) = µA(j)⇒ oi = aj



270 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

µO(i) = µB(k)⇒ oi = bk

µA(j) = µB(k)⇒ aj = bk

The alignment image Im(α) is Im(µO) ∪ Im(µA) ∪ Im(µB) and its size is the

cardinality of its image.

The local additions addA(α) of A (resp. addB(α) for B) is the subset of Im(µA)

(resp. Im(µA)) which is disjoint from Im(µO) and Im(µB) (resp. Im(µA)).

The deletion set delO(α) of O is the subset of Im(µO) which is disjoint from

Im(µA) and Im(µB).

The induced configuration a′ ← o′ → b′ is defined by

O′ = (Im(µO) ∩ Im(µA) ∩ Im(µB)) ∪ addA(α) ∪ addB(α)

A′ = B′ = O′

and o′ = (o′i)i∈O′ , a′ = (a′j)j∈A′ and b′ = (b′k)k∈B′ where

o′i =


oµ−1

O (i) if i ∈ Im(µO) ∩ Im(µA) ∩ Im(µB)

aµ−1
A (i) if i ∈ addA(α)

bµ−1
B (i) if i ∈ addB(α)

a′j = b′j = o′jfor all j ∈ O′

Based on that we can define the equality-based three-way diff for multisets.

Definition 14 (sDiff3=S for Multi-Subsets). Let a = (aj)j∈A, o = (oi)i∈O,

b = (bk)k∈B be sequences. Let µAB be the largest multi-subset for a and b, and µOSubA

(resp. µOSubB) be the largest multi-subset of o and a|Dom(µAB) (resp. b| Im(µAB)).

Furthermore, let µOA (resp. µOB) be the largest multi-subset of O and A (resp. B)

which extends µOSubA (resp. µOSubB). Finally, let α = ⟨µO, µA, µB⟩ be the smallest

multi-subset alignment such that

µO(i) = µA(j)⇔ µOA(i) = j

µO(i) = µB(k)⇔ µOB(i) = k

µA(j) = µB(k)⇔ µAB(j) = k

The result of the SDiff3 algorithm for sequences is the configuration induced by α.

Example 4.2. To illustrate the equality-based multiset synchronizer consider

the following number sequences a = [1, 2, 5, 4], o = [1, 2, 3, 4], and b = [1, 4, 5]. A run

of the synchronizer a← o→ b finds the equality multi-subset alignment

a 1 2 − 4 5

o 1 2 3 4 −
b 1 − − 4 5

Here 5 and 4 in a had to exchange positions. The resulting edit script for o is

1,−2,−3, 4,+5.



Serge Autexier: Similarity-based diff, three-way diff and merge 271

4.3 Similarity-based sequence synchronizer

This is the first extension to take similarities into account. The basic principle is

the same as for equality-based sequence to use the most similar subsequences between

a and b and again with o as a guidance to determine the similar subsequence between

o and a resp. b. As in the equality case, the obtained subsequences between o

and a resp. b are not the most similar subsequences, but that way the alignment

identifying the most similar subsequences between all three is better. Regarding

the resulting configuration, the use of similarities induces a few more conflicts and

modifications compared with the equality case. Indeed, conflicts may now also arise

between elements which have been identified in all three sequences, but are not equal.

To illustrate that we consider colored numbers (n, c) where n is a number and c ∈
{red, green, blue} a color. The similarity between colored numbers is defined by

(n, c)(n′, c′) =


0 if n ̸= n′

0.5 if n = n′, c ̸= c′

1.0 if n = n′, c = c′

Now, we may have in o a red 1, which has been changed to a blue 1 in a and a green 1

in b. Thus, all three are identified and part of the most similar subsequence. However,

this is a conflict which version to chose, blue or green, for the new configuration. A

similar conflict occurs, if a number has been changed color in one variant but deleted

in the other. We denote the first kind of conflicts as UpdateUpdate-conflicts and the

latter as UpdateDelete-conflicts.

Finally, consider a colored number being unchanged in one variant, but which

changed color in the other variant. In this case this is a local modification and we

have to include it in the merge along with the local additions as before.

As before, we formalize first the similarity-based alignment of subsequences.

Definition 15 (Similar Subsequence Alignment). Let a = (aj)j∈A, o =

(oi)i∈O, b = (bk)k∈B be sequences. An alignment α = ⟨µO, µA, µB⟩ from o to a and

b consists of three strictly increasing morphisms µO : O → N, µA : A → N and

µB : B → N such that it holds

µO(i) = µA(j)⇒ oiaj > 0

µO(i) = µB(k)⇒ oibk > 0

µA(j) = µB(k)⇒ ajbk > 0

The alignment image Im(α) is Im(µO) ∪ Im(µA) ∪ Im(µB) and its size is the

cardinality of its image.

The conflict sets Conflicts(α) of the alignment are

– all largest convex subsets of Im(α) which are unions of pairwise disjoint non-

empty convex subsets of Im(µO), Im(µA), and Im(µB) (AddAddConflicts)

– the UpdateDeleteSets of A and B{
n ∈ Im(µo) ∩ Im(µA)|n ̸∈ Im(µB) and oµ−1

O
(n) ̸= aµ−1

A

}
{
n ∈ Im(µo) ∩ Im(µB)|n ̸∈ Im(µA) and oµ−1

O
(n) ̸= bµ−1

B

}



272 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

– the UpdateUpdateSet of A and B which are those n ∈ Im(µA)∩Im(µB)∩Im(µO))

such that aµ−1
A (n) ̸= oµ−1

O (n), bµ−1
B (n) ̸= oµ−1

O (n) and aµ−1
A (n) ̸= bµ−1

O (n).

The local modifications modA(α) of A (resp. modB(α) for B) are those n ∈
Im(µA) ∩ Im(µB) ∩ Im(µO)) such that aµ−1

A (n) ̸= oµ−1
O (n) and bµ−1

B (n) = oµ−1
O (n) (resp.

bµ−1
B (n) ̸= oµ−1

O (n) and aµ−1
A (n) = oµ−1

O (n)).

The local additions addA(α) of A (resp. addB(α) for B) is the subset of Im(µA)

(resp. Im(µB)) which is disjoint from Im(µO), Im(µB) (resp. Im(µA)), and any

conflict set.

The deletion set delO(α) of O is the subset of Im(µO) which is disjoint from

Im(µA) and Im(µB).

The induced configuration a′ ← o′ → b′ is defined by

M = (Im(µO) ∩ Im(µA) ∩ Im(µB)) ∪ addA(α) ∪ addB(α) ∪modA(α) ∪modB(α)

O′ = M ∪
∪

C∈Conflicts(α)

(C ∩ Im(µO))

A′ = M ∪
∪

C∈Conflicts(α)

(C ∩ Im(µA))

B′ = M ∪
∪

C∈Conflicts(α)

(C ∩ Im(µB))

and o′ = (o′i)i∈O′ , a′ = (a′j)j∈A′ and b′ = (b′k)k∈B′ where

o′i =


oµ−1

O (i) if i ∈ Im(µO) ∩ Im(µA) ∩ Im(µB)

oµ−1
O (i) if i ∈

∪
C∈Conflicts(α)(C ∩ Im(µO))

aµ−1
A (i) if i ∈ addA(α) ∪modA(α)

bµ−1
B (i) if i ∈ addB(α) ∪modB(α)

a′j =

{
o′j if j ∈M

aµ−1
A (j) if j ∈

∪
C∈Conflicts(α)(C ∩ Im(µA))

b′k =

{
o′k if k ∈M

bµ−1
B (k) if k ∈

∪
C∈Conflicts(α)(C ∩ Im(µB))

Based on that we define the similarity-based three-way diff for sequences as

follows.

Definition 16 (sDiff3∼L for Similar Sequences). Let a = (aj)j∈A, o =

(oi)i∈O, b = (bk)k∈B be sequences. Let µAB be the most similar subsequence for

a and b, and µOSubA (resp. µOSubB) be the most similar subsequences of o and

a|Dom(µAB) (resp. b| Im(µAB)). Furthermore, let µOA (resp. µOB) be the most similar

subsequence of O and A (resp. B) which extends µOSubA (resp. µOSubB). Finally,

let α = ⟨µO, µA, µB⟩ be the smallest similar subsequence alignment such that

µO(i) = µA(j)⇔ µOA(i) = j



Serge Autexier: Similarity-based diff, three-way diff and merge 273

µO(i) = µB(k)⇔ µOB(i) = k

µA(j) = µB(k)⇔ µAB(j) = k

The result of the SDiff3 algorithm for similar sequences is the configuration induced

by α.

Example 4.3. To illustrate the similarity-based synchronizers we consider

the following numbered color sequences a = [(1, red), (2, blue), (4, red), (4, red)], o =

[(1, red), (2, red), (3, red), (4, red)], and b = [(1, red), (4, red), (4, red)]. A run of the

synchronizer for similar subsequences on a ← o → b finds the similar subsequence

alignment

a (1, green) (2, blue) − (4, red) (4, red)

o (1, red) (2, red) (3, red) (4, red) −
b (1, blue) − − (4, red) (4, red)

Here we have an UpdateUpdateConflict in the first position and an

UpdateDeleteConflict in the third position. The resulting edit script for o is

C([(1, green)], [(1, blue)]), C([(2, blue)], []),−(3, red), (4, red),+(4, red).

4.4 Similarity-based multiset synchronizer

The fourth three-way diff algorithm is the extension of the equality-based three-

way diff for multisets to a similarity-based version. Analogously, we start with the

most similar multi-subset cab of a and b, which no longer is an intersection. From that

we determine the most similar multi-subset cinit between o and cab, which again is no

longer an intersection. Then we determine the most similar multi-subsets between o

and a (resp. b) which contain cinit. As before, this is in general not a most similar

multi-subset of o and a (resp. b), but eases the alignment of all three sequences and

subsequently the merge.

In contrast to the equality case, there may well be conflicts in the similarity

cases. Indeed, as for sequences, we also have UpdateUpdate-conflicts and

UpdateDelete-conflicts in the multiset case, where one element has been changed in

different ways in both variants. However, these are the only conflicts. As for

sequences we also have local modifications, where one element has been changed in

one variant and remained equal in the other variant. These are included in the

merge.

The similarity-based alignment for multisets is defined as follows.

Definition 17 (Similar Multi-Subset Alignment). Let a = (aj)j∈A, o =

(oi)i∈O, b = (bk)k∈B be sequences. A multi-subset alignment α = ⟨µO, µA, µB⟩ from
o to a and b consists of three morphisms µO : O → N, µA : A → N and µB : B → N
such that it holds

µO(i) = µA(j)⇒ oiaj > 0

µO(i) = µB(k)⇒ oibk > 0

µA(j) = µB(k)⇒ ajbk > 0

The alignment image Im(α) is Im(µO) ∪ Im(µA) ∪ Im(µB) and its size is the

cardinality of its image.



274 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

The conflict sets Conflicts(α) of the alignment is the UpdateUpdateSet which are

those n ∈ Im(µA) ∩ Im(µB) ∩ Im(µO)) such that aµ−1
A (n) ̸= oµ−1

O (n), bµ−1
B (n) ̸= oµ−1

O (n)

and aµ−1
A (n) ̸= bµ−1

O (n).

The local modifications modA(α) of A (resp. modB(α) for B) are those n ∈
Im(µA) ∩ Im(µB) ∩ Im(µO)) such that aµ−1

A (n) ̸= oµ−1
O (n) and bµ−1

B (n) = oµ−1
O (n) (resp.

bµ−1
B (n) ̸= oµ−1

O (n) and aµ−1
A (n) = oµ−1

O (n)).

The local additions addA(α) of A (resp. addB(α) for B) is the subset of Im(µA)

(resp. Im(µA)) which is disjoint from Im(µO) and Im(µB) (resp. Im(µA)).

The deletion set delO(α) of O is the subset of Im(µO) which is disjoint from

Im(µA) and Im(µB).

The induced configuration a′ ← o′ → b′ is defined by

M = (Im(µO) ∩ Im(µA) ∩ Im(µB)) ∪ addA(α) ∪ addB(α) ∪modA(α) ∪modB(α)

O′ = M ∪ (
∪

C∈Conflicts(α)

(C ∩ Im(µO)))

A′ = M ∪ (
∪

C∈Conflicts(α)

(C ∩ Im(µA)))

B′ = M ∪ (
∪

C∈Conflicts(α)

(C ∩ Im(µB)))

and o′ = (o′i)i∈O′ , a′ = (a′j)j∈A′ and b′ = (b′k)k∈B′ where

o′i =


oµ−1

O (i) if i ∈ Im(µO) ∩ Im(µA) ∩ Im(µB)

oµ−1
O (i) if i ∈

∪
C∈Conflicts(α)(C ∩ Im(µO))

aµ−1
A (i) if i ∈ addA(α) ∪modA(α)

bµ−1
B (i) if i ∈ addB(α) ∪modB(α)

a′j =

{
o′j if j ∈M

aµ−1
A (j) if j ∈

∪
C∈Conflicts(α)(C ∩ Im(µA))

b′k =

{
o′k if k ∈M

bµ−1
B (k) if k ∈

∪
C∈Conflicts(α)(C ∩ Im(µB))

From that notion of alignment we can now define the similarity-based three-way

diff for multisets.

Definition 18 (sDiff3∼S for Multi-Subsets). Let a = (aj)j∈A, o = (oi)i∈O,

b = (bk)k∈B be sequences. Let µAB be the most similar multi-subset for a and b, and

µOSubA (resp. µOSubB) be the most similar multi-subset of o and a|Dom(µAB) (resp.

b| Im(µAB)). Furthermore, let µOA (resp. µOB) be the most similar multi-subset of O

and A (resp. B) which extends µOSubA (resp. µOSubB). Finally, let α = ⟨µO, µA, µB⟩
be the most similar multi-subset alignment such that

µO(i) = µA(j)⇔ µOA(i) = j



Serge Autexier: Similarity-based diff, three-way diff and merge 275

µO(i) = µB(k)⇔ µOB(i) = k

µA(j) = µB(k)⇔ µAB(j) = k

The result of the SDiff3 algorithm for sequences is the configuration induced by α.

Example 4.4. Consider the following multisets of colored numbers: a =

[(1, red), (2, blue), (4, red), (4, green)], o = [(1, red), (2, red), (4, red), (4, red)] and b =

[(1, red), (4, blue), (4, red)]. Running the synchronizer sDiff3∼S on a ← o → b yields

the smallest multi-subset alignment

a (1, red) (2, blue) (4, green) (4, red)

o (1, red) (2, red) (4, red) (4, red)

b (1, red) − (4, blue) (4, red)

In order to obtain the alignment, the (4, red) and (4, green) switch positions in a.

This creates an UpdateUpdate conflict between (4, green) in a, (4, blue) in b and the

second (4, red) in o. Furthermore, there is an UpdateDelete conflict between (2, red)

being deleted in b and updated to (4, blue) in a. The resulting edit script is

(1, red), C < (2, blue),− >,C < (4, green), (4, blue) >, (4, red)

5 Discussion

It is easy to see that the similarity-based three-way diffs for sequences and

multisets are conservative extensions of the equality-based notions. The algorithms

are parametric in the algorithm used to determine longest common subsequences.

The current implementation uses, for ordered sequences, a classical dynamic

programming approach[8], which was the easiest to adapt to take into account

pre-fixed mappings (i.e. cinit in the introductory discussion of Section 4.1). Thus, in

principle other LCS algorithms could be used, such as the edit-cost minimizing

algorithms of Refs. [19,4], but it would have to be adapted to take into account

pre-fixed mappings. Analogously, for unordered sequences, edit-cost optimizing

algorithms can be developed, but have not been considered yet.

Furthermore, like we have defined a most-similar mixed common subsequence,

a similarity-based three-way difference analysis for mixed sequences can be defined:

first, the three lists of a configuration are partitioned into the list-like subsequence

and the multiset subsequence to obtain two configurations. Then apply the respective

three-way diff synchronizer on each and subsequently merge the results back into a

single configuration.

Finally, as the synchronizers all operate on the principle to first compute the

similar subsequence between both variants, it is easy to derive the merge algorithms

for sequences by only computing the alignment between a and b and then compute

the induced configuration. This way we immediately obtain similarity-based merge

algorithms for sequences and multisets.

The similarity-based synchronizers are the central part of our own solution for

three-way difference analysis for tree-structured documents, like XML. The principle

here is to compute the three-way difference analysis between two lists of subdocuments



276 International Journal of Software and Informatics, Volume 9, Issue 2 (2015)

and consider the edit script: if in the edit script UpdateUpdate-conflicts occur, then

we have to recursively apply the three-way diff on the conflicting variants to come up

with a synchronization and hence an edit-script for these two conflicts. The results

can be assembled into a single configuration and an edit-script can be generated

for the different subtrees. Here other aspects are relevant, which are the level of

granularity, at which edit-scripts are returned. A current limitation is that we cannot

find subtrees that are moved across levels in the tree or to different subtrees, which is,

e.g., handled in Ref. [14]. Furthermore, we currently do not handle renamings, such as

in Ref. [15]. However, detected renamings could be handled by our approach by pre-

fixing mappings between detected renamings in the subsequence/subset computations

as is done in the synchronizers. Employing ideas from Ref. [15] or quantifiers and

scoping as used in formal logic languages to identify renamings in a pre-processing

phase is an avenue to explore in future work.

A key aspect of generic similarity-based difference analysis algorithms for

programming and domain-specific languages (e.g., Refs. [9,14,11,18]) is how easily

they can be customized for a specific domain. Addressing this issue is beyond the

scope of this article. However in Ref. [3] we have proposed a first solution to support

customization, which has been extended even further in Refs. [1,2]. In contrast to

the often weight-based and recursive or iterative approaches that can be found in

the literature, we are considering also more qualitative customizations such as

alternatives based on available attributes and subtrees, mandatory and optional

attributes and subtrees as well as customizable, context-dependent depth-limits.

This shows promising results and will be reported in a different paper.

The similarity-based synchronizers and merge algorithms for sequences,

multisets and mixed sequences as well as for trees have been implemented in Java

and successfully tested. They subsume and extend the implementation of the most

similar subsequence algorithms in Ref. [3] and have been successfully tested to

heterogeneous document collections in Refs. [1,2]. They have been successfully with

XML-files and are routinely used with XML files of up to 200 kb in size.

6. Conclusion

We have presented diff, three-way diff and merge algorithms that analyse

sequences based on the similarity of the elements and can also abstract from the

order of the elements. This is more suitable for collections of structured documents

and data as they occur in modern, digital data and document processing based

workflows. It allows to define document and data specific similarity notions that can

be informed by a domain and application specific knowledge. Moreover, it provides

tree-based difference analysis algorithms different from those currently found in the

literature. A comparison with these is beyond the scope of this article and future

work. All algorithms have been successfully implemented and tested. The

equality-based synchronizer for lists is different from the quasi-standard diff3 and in

contrast to that is idempotent. Future work will consist of analysing the other

algorithms wrt. that property and other properties, such as a locality property as

considered in[10]. Further future work beyond the future work presented in the

previous section will be devoted to have semantic-based difference analysis that goes

beyond similarity-based analysis, even if the similarity is determined using semantic



Serge Autexier: Similarity-based diff, three-way diff and merge 277

information.

References

[1] Autexier S, David C, Dietrich D, Kohlhase M, Zholudev V. Workflows for the management

of change in science, technologies, engineering and mathematics. In: Davenport JH, Farmer

W, Rabe F, Urban J, eds. Proc. of Calculemus/MKM 2011. LNAI. Springer-Verlag Berlin

Heidelberg. july 2011. number 6824. 164–179.

[2] Autexier S, Dietrich D, Hutter D, Lüth C, Maeder C. Smartties - management of

safety-critical developments. In: Margaria T, Steffen B, eds. Proc. 5th International

Symposium On Leveraging Applications of Formal Methods, Verification and Validation

(ISoLa’12). LNCS. Amirandes, Heraclion, Crete. Springer. october 2012.

[3] Autexier S, Müller N. Semantics-based change impact analysis for heterogeneous collections of

documents. In: Gormish M, Ingold R, eds. Proc. of 10th ACM Symposium on Document

Engineering (DocEng2010). UK. 2010.

[4] Ann HY, Yang CB, Peng YH, Liaw BC. Efficient algorithms for the block edit problems.

Information and Computation, 2010, 208(3): 221–229.

[5] Chawathe SS, Rajamaran A, Garcia-Molina H, Widom J. Change detection in hierarchically

structured information. ACM SIGMOD Record, 1996, 25(2): 493–504.

[6] Dahlström E, Dengler P, Grasso A, Lilley C, McCormack C, Schepers D, Watt J, Ferraiolo J,

Jun F, Jackson D. Scalable Vector Graphics (SVG) 1.1 (Second Edition). W3C, August 2011.

[7] Eggert P, Haertel M, Hayes D, Stallman R, Tower L. Gnu diff, April 1988. Version 2.8.1, April

2002; distributed with GNU diffutils package.

[8] Hunt JW, McIlroy MD. An algorithm for differential file comparison. Computing Science

Technical Report 41, Bell Laboratories, June 1976.

[9] Hunt JJ, Tichy WF. Extensible language-aware merging. 18th International Conference on

Software Maintenance (ICSM 2002), Maintaining Distributed Heterogeneous Systems. 3-6

October 2002. Montreal, Quebec, Canada. IEEE Computer Society. 2002. 511–520.

[10] Khanna S, Kunal K, Pierce BC. A formal investigation of diff3. In: Arvind V, Prasad S, eds.

FSTTCS 2007: Foundations of Software Technology and Theoretical Computer Science. Lecture

Notes in Computer Science. Springer Berlin Heidelberg. 2007, volume 4855. 485–496.

[11] Lin YH, Gray J, Jouault F. DSMDiff: a differentiation tool for domain-specific models. EJIS,

2007, 16(4): 349–361.

[12] Lindholm T. A three-way merge for xml document. Proc. of the 2004 ACM symposium on

Document engineering. ACM Press. New York, NY, USA. 2004. 1–10.

[13] Lanham M, Kang A, Hammer J, Helal A, Wilson J. Format-independent change detection and

propoagation in support of mobile computing. Brazilian Symposium on Databases (SBBD).

Gramado, Brazil. October 2002. 27–41.

[14] Melnik S, Garcia-Molina H, and Erhard Rahm. Similarity flooding: A versatile graph matching

algorithm and its application to schema matching. In: Agrawal R, Dittrich KR, eds. Proc. of

the 18th International Conference on Data Engineering. San Jose, CA, USA. February 26 -

March 1, 2002. IEEE Computer Society. 2002. 117–128.

[15] Malpohl G, Hunt JJ, Tichy WF. Renaming detection. Automated Software Engg., April 2003,

10(2): 183–202.

[16] Myers EW. An o(nd) difference algorithm and its variations. Algorithmica, 1986, 1(2): 251–

266.

[17] Smith R. Gnu diff3, April 1988. Version 2.8.1, April 2002; distributed with GNU diffutils

package.

[18] Treude C, Berlik S, Wenzel S, Kelter U. Difference computation of large models. In: Crnkovic

I, Bertolino A, eds. Proc. of the 6th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT International Symposium on Foundations of Software

Engineering, 2007, Dubrovnik, Croatia, September 3-7, 2007. ACM. 2007. 295–304.

[19] Tichy WF. The string-to-string correction problem with block moves. ACM Trans. Comput.

Syst., 1984, 2(4): 309–321.


