
Int J Software Informatics, Volume 10, Issue 4 (2016), pp. 000–000 E-mail: ijsi@iscas.ac.cn

International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org

©2016 by ISCAS. All rights reserved. Tel: +86-10-62661048

DOI: 10.21655/ijsi.1673-7288.00238

Applying Programming Language Evaluation

Criteria for Model Transformation Languages

Leila Samimi-Dehkordi, Alireza Khalilian, and Bahman Zamani

(MDSE Research Group, Department of Software Engineering, University of Isfahan, Isfahan, Iran)

Abstract The appraisal of the status quo for the methods of evaluating model

transformation languages (MTLs) manifests several shortcomings: they are often either

language-specific or feature-specific, they may lack of sufficient discussion on possible

values for proposed criteria, few MTLs may be applied in their evaluation, or a

combination of these limitations. We have previously proposed a method which utilizes

programming language (PL) criteria for evaluation of MTLs. In this paper, an improved

method is proposed in which a large family of 11 major criteria with total of 46

sub-criteria, mainly inspired from PL evaluation criteria, is used to evaluate MTLs. Then,

an interactive methodology is proposed that consolidates the criteria to establish a

decision-support system for MTL selection. In order to investigate the effectiveness of the

criteria and the proposed methodology, six MTLs were used for studies: ATL, Kermeta,

ETL, QVT-O, QVT-R, and TGG. The results of MTL evaluations corroborate that the

criteria are highly effective in practice; they provide helpful insights for different users to

enable them to choose the most appropriate MTL for the application at hand. With our

decision-support methodology, we could have achieved evidence to imply applicability in

real-world scenarios.

Key words: model-driven engineering; model transformation language; evaluation criteria

Samimi-Dehkordi L, Khalilian A, Zamani B. Applying programming language

evaluation criteria for model transformation languages. Int J Software Informatics,

Vol.10, No.4 (2016): 000–000. http://www.ijsi.org/1673-7288/10/238.htm

1 Introduction

Model-driven engineering (MDE) is an emerging and promising paradigm to the

software development in which models are first-class entities and play the key role for

the development of software[1,71]. It can be considered as a methodology that helps

gain as much benefit as possible from the models in software development.

Similar to the “everything is an object” principle in object-oriented programming

that results in simplicity, generality, and uniformity of object-oriented languages, the

principle of “everything is a model” in MDE leads to uniformity and coherency of

model-driven approaches. For example, the definition of the modeling language itself

can be expressed by a model. MDE calls this process meta-modeling [72].

Models are not only static or isolated artifacts[1]; but also they can be refined,

refactored, merged, aligned, migrated, and improved or even they can be exchanged

Corresponding author: Bahman Zamani, Email: zamani@eng.ui.ac.ir
Received 2016-10-17; Revised 2017-01-03; Accepted 2017-01-23.



2 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

between different tools[2]. These tasks can be simply accomplished given the

prominent role of model transformations in MDE. Model transformations provide

flexible ways to define mappings between models in different types and abstractions.

These operations are implemented as model-to-model (M2M) transformations.

In order to express models and transformations, some notations are required

which MDE calls them modeling language and model transformation language

(MTL) respectively[1]. Often, for each MTL, at least one tool has been produced

and presented. Currently, a large number of different MTLs with various

characteristics have been introduced in the literature to enable developers and

designers to define transformation rules in a manner that fulfils their requirements

as much as possible. The diversity between MTLs and their characteristics prevents

them to be employed in general-purpose applications. Hence, we need to choose

among different MTLs for each specific task. As a result, the need to the methods

for assessment, evaluation, and comparison of MTLs seems necessary.

A large body of literature has established methods to investigate MTLs and the

characteristics of MTLs have been studied from different aspects[3,4,5,6,7]. However,

there are limitations concerning the current studies:

– checking just a specific characteristic or aspect in different MTLs[5,8]

– specificity to certain language[6] and lack of generalization to all MTLs

– presenting characteristics without any discussion on possible values for the

defined characteristics[2]

– evaluating a few (possibly non-representative) MTLs

– receiving less attention by Triple graph grammar (TGG) as compared to others

– applicability for evaluation of some candidate MTLs for a certain task; After

evaluation completes, developer is responsible for final selection of an MTL

according to the results of evaluation. This task might be challenging and

draws an important gap in current MTL research.

These limitations motivated us to identify a family of criteria which we believe

have much potential to evaluate MTLs more precisely. We have previously proposed

a method in which programming language (PL) evaluation criteria were used for the

assessment of MTLs[9]. This method used three major criteria and nine sub-criteria

for the task of MTL evaluation and studied the effectiveness of the method using five

MTLs. The results were encouraging and served us as a proof of concept.

In this paper, we largely extend the mentioned research work by proposing a

family of 11 major criteria and 46 sub-criteria mainly used in the assessment of PLs.

These criteria were adapted to utilize their potentials for the task of MTL evaluation

which has very similar properties and requirements. This idea roots in the intuition

that MTLs are also languages to express computations. The only (slight) difference

lies in their abstraction level and the type of computations they do. Specifically, we

intended to compile the criteria with the following properties:

– the criteria that focus on evaluation of MTLs not their tools



Leila Samimi-Dehkordi, et al.: Applying programming language ... 3

– the criteria that the evidence to measure them can be easily found; everyone

can make a justifiable measurement on the criteria and the results would be

reproducible.

Given that PLs have much longer precedency than MTLs and their

characteristics have been investigated in high number of studies[43] using the various

specific designed criteria, we can adapt them for evaluating MTLs. On the one

hand, long background behind PL evaluation criteria along with deeper and more

comprehensive understanding of their interrelationships and mutual effects facilitate

the measurement task. On the other hand, specificity and suitability for the

assessment of PLs themselves, makes them an appropriate choice to MTL evaluation

and satisfaction of our design goals. These features also make measurements of the

criteria simple yet more accurate despite the fact that most of them are subjective.

The PL criteria we introduce are not novel themselves; however, applying them in

MTL evaluation is a novel idea.

In addition, we employed the criteria to establish a systematic methodology to

recommend an appropriate MTL in a given application. The proposed methodology

takes the stakeholders of an application along with their requirements and priorities

(preferences) as input. Then, it uses the criteria to compute the score of each

candidate MTL and suggests one with the highest score. The novelty of this

methodology is to establish a decision-support system considering stakeholders of an

application, their requirements which are a reflection of the underlying task, and

their preferences which is a reflection of their experience in applying MTLs.

Combining these pieces of knowledge, the methodology ranks candidate MTLs and

suggests the most conforming one. The proposed methodology is general and

flexible enough to be used with any evaluation method using different criteria.

In order to investigate the effectiveness of the criteria, we have conducted a

comprehensive study on six transformation languages as per following: AtlanMod

Transformation Language (ATL)[10], Epsilon Transformation Language (ETL)[11],

Kermeta[12], QVT-Operational (QVT-O)[13], QVT-Relational (QVT-R)[13], and

Triple Graph Grammar (TGG)[14]. As expected, the results confirm that no MTL is

absolutely superior to the others. More importantly, the results show that there is

potential benefit to be achieved by accounting for the PL evaluation criteria to the

assessment of MTLs. In other words, these criteria provide deep understanding of

the underlying characteristics of MTLs from various aspects. This recognition helps

the user pick the most appropriate MTL among some candidates for his/her specific

application. In summary, the major contributions of this paper are as follows:

– A family of criteria inspired from PL evaluation criteria which are accorded for

the assessment of MTLs

– A systematic requirement- and priority-aware methodology to recommend the

best-fit MTL for a certain task, taking into account the stakeholders of a task,

their requirements and their preferences

– A comprehensive study evaluating six MTLs using the criteria along with a

detailed discussion on the results



4 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

The rest of the paper is organized as follows. Section 2 presents discussion on

language selection for our evaluation. Section 3 presents the criteria for the assessment

of MTLs. In Section 4, the results of evaluating six transformation languages using

the introduced criteria are shown in detail. Section 5 gives a discussion on the criteria

and the results. Related work is expressed in Section 6. Finally, Section 7 concludes

the paper.

2 Language Selection

In order to establish an evaluation on presented criteria and applying our

proposed methodology, we need to choose some MTLs. The chosen languages should

be as much representative of large number of current MTLs as possible to help the

results generalize. M2M language selections are often made for pragmatic reasons,

e.g., availability of a local expert, a similar problem solved using that language, and

so on. One way to determine suitable MTLs for our study is to review the major

body of literature. By investigating previous similar studies, we found six languages

that are common, widely-used, and well-known both in academic research and

industrial practice. These six MTLs are listed in the following along which we give

the specific reason behind selection of each MTL.

– ATL[10,19] is a widely-used and well-known MTL which is used as a benchmark

in most studies.

– ETL[11,20] is a hybrid rule-based MTL that supports declarative rules with

imperative bodies, logic OCL expressions, Java object method calls, and so on.

It also presents all of the standard features of an MTL along with the

capability of transforming many input to many output models[18].

– Kermeta1[12,21] is a general-purpose MTL similar to PLs.

– Two QVT languages: QVT-O[22,23] and QVT-R[13,24,25,26] are standardized

MTLs established by Object Management Group2 (OMG) and have been

commonly evaluated in different studies.

– TGG[14,27,28,29,30,31] is a popular and widely-used representative of graph

grammar MTLs with less attention in studies. To note that TGGs are a

category of approaches themeselves and may seem to be out of place compared

with other languages that are concrete instances of languages. Therefore, here

TGG is an abstract MTL consisting of common characteristics of its concrete

instances.

In order to evaluate a certain MTL, one needs to know the syntax, semantics, and

pragmatics of that language. However, to save space and because we investigate the

characteristics of each selected MTL when evaluating using our criteria, we postpone

further explanations about languages to Section 4 where is best positioned for this

task.

1www.kermeta.org/
2www.omg.org



Leila Samimi-Dehkordi, et al.: Applying programming language ... 5

3 The Proposed Method

While PLs and MTLs share many commonalities, they differ at least in two

aspects: the abstraction level and the primitives or alphabets used for programming.

Both PLs and MTLs are used for some kind of computation by computer. The

program written by each category is realization of an algorithm which is typically

interpreted or compiled and executed. However, the level of abstraction in MTLs is

often higher than that of PLs. The concepts such as model, meta-model (MM),

transformation rules, and conformance are typical elements of programs written by

an MTL. By contrast, variable, memory cell, definition and declaration, parameter

passing, registers and segment-offset address (in lower level languages), and many

others are primary concerns in PLs. Model in an MTL is more abstract than a

variable in PL. Some elements including loops, conditionals, and selections are

common between PLs and MTLs. The mentioned elements of PLs and MTLs in

turn comprise their primitives or alphabets which are used by programmer to

construct the program. Moreover, MTLs are often application-specific as compared

to PLs that are typically general-purpose. MTLs are designed and customized (and

possibly optimized) for the task of model transformation. In contrast, PLs are

designed to establish arbitrary computation.

Suppose that CP and CM are computations for which PLs and MTLs are

conventionally employed respectively (not computations that can theoretically be

carried out by PLs and MTLs). Then we can see that for CP and CM , neither is

superset or subset of the other. But rather we have CP ∩CM ≠ ∅. Similarly, suppose

that AP and AM are alphabets, primitives or basic elements and constructs, of PLs

and MTLs accordingly. Again we observe that for AP and AM , neither is superset

or subset of the other and we have AP ∩AM ≠ ∅. The extent of intersection for each

couple is very high though they hardly equate.

This amount of commonalities between PLs and MTLs motivates us to exploit PL

evaluation criteria for the task of MTL evaluation. The only requirement is adaptation

or re-definition of PL criteria for MTL context. In the process of re-definition, we

should take the (higher) level of abstraction of MTLs and their constituting primitives

into consideration.

Another problem that merits explanation is subjectivity of evaluations. Most of

the evaluation criteria are wide concepts and their values are ambiguous[32]. It is

difficult to find two computer scientists that agree on the meaning of evaluation

criteria and their values[32]. Therefore, it is reasonable to assume that most

evaluations on software are by nature subjective. Objective measurement needs

provable facts which are not the case for evaluation criteria with vague meaning and

values. Nevertheless, the research community attempted to mitigate this issue by

incorporating objective measurements[2,3,4,35]. This will help limit the threats

concerning subjective evaluations. There might be rare situations where evaluations

are too subjective to final decision on MTLs. Even in these cases, evaluation criteria

provide useful insights in recognition of MTLs. This is because they are designed to

help the developer to look at MTLs from different perspectives. Hence, they would

facilitate decision making on MTLs for the developer.

Measuring of subjective criteria can be performed in several ways. For one, we

can define a set of objective sub-criteria and measure them. This is the case in this



6 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

paper. For two, we may provide questionnaires and ask experienced persons. This

might be impractical because access to such persons is not always trivial. For three,

a comparison method for each individual criterion is employed; i.e., MTL x is better

than y. However, the amount of superiority of x cannot be measured. Finally, we can

provide some categories and their features. Then, determine a score for each category

and MTLs are scored according to the category they belong. This makes comparison

relatively hard although we favour it in some situations.

We emphasize that the presented criteria are intended to evaluate MTLs

themselves not programs. In other words, evaluating MTLs is assumed to be

independent of the problem that is being solved. A source of evidence to this claim

is that even with a well-designed language, a programmer may produce a program

that is unstructured and less readable and reliable[32]. The size, complexity, and

nature of the underlying task does not affect to the particular features of an MTL

itself such as readability. It does influence on the solution produced by developer

due to, for example, bad design, lack of enough experience, misuse of language

constructs, and so on.

3.1 The evaluation criteria

Here, we present the criteria: readability, writability, reliability, maintainability,

learnability, generality, portability, reusability, availability of tools, standardization,

and cost. Figure 1 depicts the criteria and their interrelationships.

Figure 1. The criteria and their relationships.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 7

3.1.1 Readability

Readability is the ability to understand what has been written, which is defined

based on some PL characteristics[32] and transformation language features[33].

Evaluation of readability of a language must be accomplished in the context of its

application. More precisely, comparing the readability of two languages with

different application domains is not justified. The characteristics and features of

readability are described in detail in the following.

Simplicity: A language with a small set of basic constructs and primitive

features is a simple language[32]. It is desirable to have minimal operator overloading

in the simple languages[32]. From the model-driven paradigm point of view,

declarative languages are simpler than imperative ones. The hybrid MTLs combine

the simplicity of declarative approaches with the expressive power of the imperative

ones to utilize the benefits of both styles. We define simplicity based on the number

of primitive types and minimal operator overloading.

Orthogonality: A language is orthogonal when a small set of basic constructs

can be combined in a relatively small number of ways to create data structures of

the language[32]; every possible combination of relatively small number of primitives

should be allowed in the orthogonal language and have a meaningful construct. In

the context of MTLs, supporting parameterization [33] can be considered as one of the

orthogonality characteristics, which has three features:

(1) Control parameters, (2) Generics, and (3) Higher-order rules. Here,

orthogonality deals with combination of rules and the parameters that are allowed

to be sent to them and whether rules are allowed as input parameter to the other

rules. For the case of PLs, this situation occurs in functions instead of rules. In fact,

the difference lies in the notion of abstraction level which is argued at the beginning

of Section 3.

Control parameters allow implementing policies by passing values as control flags.

Generics allow passing data types as parameters, which includes model element types.

Higher-order rules are the rules, which take other rules as parameters. Another

significant feature of orthogonality is data type completeness, a principle[34] that states

all of the data types should have the same status; “no operation should be arbitrarily

restricted in the types of its operands[34].” If a language has some degrees of class

distinctions in its data types, it violates type completeness.

Syntax design: The language syntax has a significant role to make a language

readable. The examples of syntactic design choices are keywords, method of forming

compound statements, and form and meaning [32]. One of the critical issues of

keywords is whether they can be used as variable names. If it is possible, the

transformation code will be confusing, leading to low readability. Moreover,

increasing the number of keywords improves the readability of programs. Form and

meaning is described by statements that their appearance indicates their semantic

purposes; the syntax (form) should indicate the semantic. The language should

prevent identical constructs with different meanings. More precisely, the language

should be grammatically transparent; a one-to-one mapping between grammatical

form and semantic meaning. Note that syntax and structural design of a language

does not necessarily imply high readability of programs. Readability should also be

considered in the context of a language’s application.



8 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

Syntactic separation: If the operating parts of the source model are separated

from the operating parts of the target model in a transformation rule, the language

supports syntactic separation[33]. It is obvious that supporting syntactic separation

makes the transformation more readable. The degree of the separation is described

based on the language styles; for example, in TGG, the operating parts of source,

target, and corresponding graphs are completely separated. However, in imperative

languages such as Kermeta, this separation is not considered.

Application condition: It is a condition on a rule which controls its

execution[33]. In order to execute the rule, its application condition must be true.

This feature enables the user to define some rule for special cases of the model

elements. It can be described as a kind of control construct, which is the main

characteristic to make a language more readable[32]. Lack of this feature leads to,

for example, multiple if-else that results in less readability.

Rule scheduling: Scheduling is a mechanism, which determines the order of

applying individual rules. In some languages, it is possible to schedule transformation

rules explicitly[33]. In this case, the programmer can read the transformation rules in

a meaningful order. Explicit scheduling can be defined internally or externally. The

external scheduling separates the rules from the scheduling logic. However, in the

internal manner, the scheduling is described directly in the rules by invoking other

rules. The implicit scheduling makes the language less readable.

Domain body: A domain is a rule part, which is responsible for accessing

one of the models[33]. In each application more than two source and target domains

are allowed. Domain body has three subcategories including variables, patterns, and

logic[33]. In the variables, the source or target elements are kept. Patterns are the

fragments of models containing some variables. In some cases, they also contain meta-

language expressions and statements. Based on the model representation, patterns

can be categorized in string, term, or graph patterns. Model to model transformation

approaches usually apply term or graph patterns. Graph patterns make language

more readable, and string patterns make it less concise. Patterns are described by

the abstract or concrete syntax of the source or target MMs. The concrete syntax

can be textual or graphical. Graphical syntax is clearer than textual in reading.

Logics are defined as the computations or constraints on the model elements which

are determined based on the way of value specification and element creation. There are

three alternatives for the value specification: imperative assignment, binding values,

and specification values through constraints. Elements can be created implicitly or

explicitly. Explicit creation makes the program more readable.

Tracing: Tracing is defined as runtime footprints of execution[33]. In the trace

model, there are trace links which connect source elements to the target ones. Trace

data can be helpful to know how modifying one model affects other related models

which are useful for impact analysis, model synchronization, and transformation

debugging. The traceability links can be recorded in a separate model, or in one of

the source or target models. If traceability links are stored in a separate model, the

program reader can follow the results of the transformation easier.

3.1.2 Writability

Writability is the ability to say what you mean without any expressive verbiage.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 9

Writability is provided by means of regular, concise, short, and cryptic structures.

Most of the features affecting readability would also influence writability because

when writing a transformation code, it is read many times to write the remainder

or modify the existing parts. Note that writability must also be evaluated in the

application domain of a transformation language. In the following, the sub-criteria of

writability are explained.

Simplicity and orthogonality: Some features of a language with a great

number of constructs may be misused or disused because of the programmer

unfamiliarity and misunderstanding. Therefore, a relatively small set of basic

constructs and a consistent number of combination ways is much more preferable to

support writability.

Syntax design: If the language syntax is compatible with the language

semantic, writing a transformation program can be easier. In this case, the

programmer does not need to remember identical constructs with different

meanings. Existence of default or implicit grammatical rules in a language helps

increase the writability of programs.

Abstraction: The ability of defining complicated structures (or operators) at

higher levels such that unnecessary details can be ignored is called abstraction. If a

language supports a high level of data and control abstraction, it will be more

writable; in this case, more complicated computations can expressed shorter and

simpler[32]. In the model-driven context, abstraction is determined based on

supporting specification of abstract rules, operation overloading, simplification,

selection, generalization, reflection, aspect, and modularity. Abstract rules, which

are not executable, can be used to specify core behavior for the sub-rules[35]. The

capability of specifying user-defined operations (function), and operator overloading

can lead to abstraction[35]. Simplification is denoted as abstracting the

language-specific details and abstracting from control flow[36]. Abstraction by

selection concentrates on a particular part of the MMs to enable the developer to

define transformations in a divide-and-conquer manner[36]. Generalization process is

defined based on the generic transformation logic, which is supported by generic

types[36]. In reflection, transformation rules can access the transformation

themselves[33]. Aspect enables the language to express concerns crosscutting several

rules[33]. Modularity is a mechanism of packaging rules into modules, which can be

imported in other modules[33]. Each module consists of a set of objects including

procedures, data types, variables, and other artifacts that constitute an abstract

unit. Modularity is essentially dependent to information hiding[37] which refers to

hiding objects and computations from other portions of the system that do not

require them. Note that modularity also contributes much to the handling of

complexity in developing large applications.

Expressiveness: Expressiveness, expressivity, or expressive power has a broad

range of meaning. In the context of PLs, expressiveness means to provide convenient,

natural, and appropriate ways to express computations and algorithms. A language

would be more expressive if it has syntactical structures that programs written in

that language reflect the logical structure of the algorithm clearly. In the context of

formal languages, expressiveness refers to the language’s power in expressing ideas

and computations; the notion of Turing-complete. For the case of transformation



10 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

languages, it is common to consider expressiveness as Turing-completeness[38].

However, we can benefit from the both worlds: convenient ways to express

computations and Turing-completeness. A Turing-complete language should support

unbounded memory, and unbounded repetitions [38]. If a language only allows

bounded iteration or recursion, it is non-Turing-complete because the termination of

the transformation execution becomes decidable. It is worth mentioning that for

visual languages, the looping constructs are defined as blocks with internal

repetition and blocks applied on collections. Recursion in visual languages is

presented by control flows, which are transferred back to a previous block.

Bidirectionality is a valuable feature for MTLs which has significant impact on

expressiveness power of an MTL. It refers to the capability of a language in which a

rule is interpreted from both source to target and from target to source provided that

a single source and a single target model are used[16].

Finally, incrementality is another influencing factor in expressive power of a

language. It is the ability of updating one existing model based on the changes in

another[33]; that is, the former model would not be computed from the scratch. This

feature can enhance the performance when the source and target models are very

large. Expressiveness is influenced by incrementality in that it helps express some

applications in a more natural and convenient manner.

Syntactic separation: As mentioned, syntactic separation is one of the features

of the readability and it also affects the writability of the transformation program. For

instance, in the graph transformation, the operating part of the source is separated

from the target part, and this separation can lead to high writability in the program

or model of the transformation. In other words, it makes the transformation rules

simpler and more writable.

Application condition: The conditions for restricting the model elements,

which are operated by the rule, make the language more expressive due to providing

natural ways to express transformations. Using application conditions often leads

to eliminate if statements. Therefore, a program can be written more concisely

increasing writability.

Rule scheduling: If a language provides scheduling implicitly, transformation

programs by this language can be written simpler. However, for readability it is

preferable to define the rule scheduling explicitly. This is one of the features that

make readability and writability conflicting.

Domain body: If a language has a graphical syntax, writing transformation

programs can be simpler. For element creation if it is performed implicitly, the

writability can increase. Imperative assignment is more natural for specifying value

in comparison to value binding.

Tracing: If the creation of traceability links needs to be manually encoded, the

writability of the transformation language decreases. For automatic tracing, some

control may also be required to determine what should be recorded.

3.1.3 Reliability

Reliability is the ability of checking erroneous assumptions in the source model

and handling the exceptions[5]. A model transformation program is reliable if it always

works according to its intended specifications. It is determined based on PL criteria



Leila Samimi-Dehkordi, et al.: Applying programming language ... 11

including readability, writability, exception handling, and aliasing, and transformation

language features, i.e., rule application strategy, and domain typing.

Readability and writability: Reliability is much influenced by both writability

and readability. Programs written with unusual and unnatural structures are less

likely to be reliable in all situations. In other words, if a language lacks the natural

ways to express computations, programs have to use unusual structures and ways of

programming which results in a program that may not work properly in all situations.

Readability also influences the reliability of the transformation in implementation and

maintenance phases. Programs that are hard to read or have low readability due to

some features are difficult to analyze and to modify.

Exception handling: In some cases, during the transformation execution,

exceptional situations may be happened. The ability of intercepting runtime errors

by encoding some statements in the program is called exception handling [32]. In

model transformation programs, an exception can be handled explicitly by user with

defining exceptional situations and their handlers in the transformation. In other

cases, exception can be handled implicitly in the implementation of the

transformation language, or may not be handled at all[5].

Aliasing: Having more than one distinct access method to the same memory cell

is called aliasing [32]. Pointers to the same variable are an example. Less reliability

and difficulty of program verification are the major issues.

Rule application strategy: Each rule should be applied in a certain location in

its source scope. In a certain source scope, there may be multiple matches for a rule.

This is why we need to a strategy to specify the application locations. This strategy

can be deterministic, nondeterministic, or interactive[33]. Deterministic strategy leads

to high reliability.

Domain typing (Type checking): The typing of the domain body

components can be untyped, syntactically typed, or semantically typed[33].

Template-based approaches usually use untyped patterns, which are not considered

in this paper. Most of the M2M transformations are syntactically typed, which

means that compatibility of the data types in expressions are checked at

compile-time. In the context of PLs, it is called static type checking. In addition,

syntactically typed languages can be further divided into strongly-typed or

weakly-typed [37]. If every type incompatibility or type error of expressions is

detected at compile-time, then we would have a type-safe language and it is

considered as strongly-typed. Otherwise, if there is at least one situation which is

not type-checked at compile-time, the language would be weakly-typed. Strong

typing is an important property for a language, in that it highly increases the

reliability of the programs. In the semantic typing, well-formedness rules or

behavioral properties are allowed to be asserted.

3.1.4 Maintainability

This is the ability of implementing a specified modification to the transformation

program effectively[32,39]. It is determined by the size, complexity, readability of the

transformation and abstraction mechanisms employed in it.

Size: The size of transformation is determined by the number of code lines on

the same problem. The larger the size and the complexity of transformation program,



12 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

the lower the transformation flexibility.

Complexity: The complexity is determined by the total number of occurrences

of operators, features, and entities and the number of operation and rule calls on the

same problem.

Readability: Since maintenance stage includes modification and/or extension

of the existing code, one must be able to read and understand the code easily. High

readability dramatically reduces the costs of maintenance stage and overall lifecycle

of transformation program.

Abstraction: Correct application of any kind of abstraction within the

transformation program impacts on its readability and facilitates maintenance tasks.

Since abstraction helps ignore unnecessary details, the complexity of the overall

transformation reduces. Hence, any modifications and extensions on transformation

program are made easier. A properly-defined abstraction implies encapsulation of

data and operations. Encapsulation helps reduce the complexity and increase

understandability of programs. The net effect is facilitating the tasks of

maintenance.

3.1.5 Learnability

This criterion includes features that help programmers learn the language more

rapidly or factors with strong effects on simplicity and thus learnability of a

language[40]. Three sub-criteria can be considered:

Learning curve: The learning curve is the time that takes to be mastered the

basics of the language. In other words, it is defined as the expected difficulties in

learning to read and write language specifications[41]. Low learning curve leads to

high learnability. If a language constructs are defined based on another well-known

language, the ease of learning of the former will increase.

Language size: There exist at least two cases for a language in terms of its

size[34]. If the language’s kernel includes all the required features of a programmer,

it is monolithic. Otherwise, it is microkernel. For the case of microkernel languages,

the language itself has a small number of data-types and constructs. However, strong

abstraction and rich library of reusable modules are provided for different applications.

The programmer can also define any required structure or data-type and underlying

operations of his/her own using the primitives of the microkernel language. The

result is transferring the complexity from the language itself to its library. Besides,

the learnability of the language increases. Monolithic languages have built-in and

predefined features, which can hardly be extended. So in a special application, the

language is not able to provide the requirements exactly. On the other hand, users

of microkernel languages can skip the existing libraries of the language and produce

their own libraries according to the specific requirements.

Maturity: Maturity of a tool is defined as the history of use or the number of

years that the tool has been public, the number of case studies implemented by the

tool[17], and the availability of technical supports such as forum.

3.1.6 Generality

Generality is the ability to use the language in a wide range of applications.

Generality has conflict with simplicity because it needs several features to make the



Leila Samimi-Dehkordi, et al.: Applying programming language ... 13

language applicable in many situations. If a language can define transformations to

apply the following features[15], we consider it as a general language:

Transformation cardinality: It is related to the number of source models

that is allowed in the transformation and the number of target models which are

generated as output. There are four cases for the transformation languages including

1-to-1, M-to-1, 1-to-N, and M-to-N, the latter case makes the MTL more general.

Technical space: This refers to the family of technologies, such as data

structures, parsers, file formats, and data manipulation facilities to represent

models[16]. The examples include XML, XMI, and EMF.

Heterogeneity (Endogenous vs. Exogenous): Endogenous transformations

include those with the same source and target MM, while exogenous transformations

work on source and target models with different MMs.

Ability to create/read/update/delete transformations (CRUD

operations): If a language provides all of the mentioned operations, its expressive

power will increase and it becomes more general.

Ability to specify bidirectional transformations: Bidirectional languages

use a single source and a single target model and allow interpretation of rules in both

ways.

Support for traceability and change propagation: The ability of providing

a log of the execution of transformation which can be either built-in into the tool or

can be implemented as part of the transformation itself[16]. Besides, the ability to

transform only the changed part of the source model in case of any change is called

change propagation.

Model merging: It refers to merging the data of several models, with same or

different MMs, into a common model.

Model comparing: One of the requirements of the model-driven area is model

comparing which is used in some transformation case studies. Support this feature

leads to more general languages.

Model validation: One of the applications in the model-driven context is

model validation. Some transformation languages can provide techniques to validate

generated models, or input ones. In other cases, transformation languages can be

integrated to validation languages.

Integration to code generator: This paper studies M2M transformation.

However, another necessary type to separate Platform Specific Model (PSM) from

Platform Independent Model (PIM) is model-to-text transformation. In most cases,

the transformation languages are designed either for M2M or for model-to-text

transformation. However, some facilities are required to integrate these two types of

transformation languages to support more applications.

3.1.7 Portability

Portability is the ability of moving a program from one implementation to another

without any changes in the transformation program[32]. It can be defined in the

different levels of platform layers including level of hardware, level of operating system,

level of Integrated Development Environment (IDE), and level of release version. For

the most transformation language environments, which are implemented as an Eclipse

plug-in, only the level of release versions can be considered. It is worth to mention



14 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

that Eclipse can run on both Linux and Windows. However, Eclipse has different

versions which may not support a special plug-in on some releases.

3.1.8 Reusability

Reusability is the extent to which a transformation program or parts of a

transformation program can be reused in other applications[39]. It is defined based

on two mechanisms: abstraction and reuse. Composition can be defined as one of its

characteristics. Reusability can be affected by supporting higher-order rules[35].

Abstraction: As stated, abstraction is one of writability sub-criteria. It is

defined based on eight features, i.e., abstract rules, operator overloading,

simplification, selection, generalization, reflection, aspect, and modularity that all of

them affects reusability. For example, modularity allows a module to import other

modules; it is considered as a kind of reuse.

Reuse: Reuse mechanism is the ability of specifying a rule (or a module) based

on using other rules (or modules). Inheritance between rules such as rule inheritance

is another feature of reuse mechanism. In some languages, the multiple inheritance is

supported. Unit inheritance increases the reusability of the language.

Composition: This feature, in which a rule is invoked from another rule, is used

to compose transformation rules that are a kind of reusing process[33].

Support for higher-order rules: Higher-order rules are the rules, which reuse

other rules as parameters[35].

3.1.9 Availability of tools

This criterion refers to the existence of good-quality translators and integrated

development environments (IDEs)[34]. Rapid development and easy installation

make the tools for the language more attractive. One of the significant factors that

affect language success is patronage which means having a powerful sponsorship for

a language[37]. Maturity which is discussed in the learnability criterion is another

investigated feature.

Translator and debugger: A good-quality translator checks the language’s

syntax and type system, translates and runs the source program efficiently, and

reports any errors precisely. A good-quality IDE combines all aspects of

documenting, helping, developing and debugging of programs effectively.

Rapid development: It is defined based on the frequency of release and

regularity in bug fixing.

Easy installation: In easy installation, the language tool can be installed easily

without any other requirements. Therefore, it is determined based on the number of

plug-in or software that are required to be installed.

Patronage: In fact, the amount of usage and applicability of a language and

its lifecycle depends in large to whether it is built, developed, and sponsored by a

famous and well-fixed organization or company, even if languages with better design

and constructs are available[37]. This patronage to the language and dominance to

programmers will result in high inertia; programmer’s expertise and producing large

amount of software. This situation makes the replacement to the language even more

difficult. Therefore, sponsorship and the underlying problems associated with it are

more affective to the applicability of a language as compared to technical ones. For



Leila Samimi-Dehkordi, et al.: Applying programming language ... 15

example, QVT languages owe their life to OMG.

3.1.10 Standardization

In order to make the implementation of languages compatible, standard

definitions for each language are provided[42]. Standards of a language are either

public, which are defined by international organizations, or private, which are

defined by the owner and constructor of the language. Public standards are

preferred to private ones. Standardization is related to three factors including

timeliness, conformance, and obsolescence[42].

Timeliness: It refers to the appropriate time for standardization of a language.

A language may be never standardized, early-standardized, lately-standardized, or

timely-standardized. A language is early-standardized if it is standardized before

releasing any implementations of that language. A language is lately-standardized if

is standardized after releasing a number of translators for that language, which leads

to incompatibilities. A language is timely-standardized if the standardization occurs

after few years of language design and releasing limited number of translators. This

makes useful experiences to the language strengths and weaknesses. Consequently, a

well-designed language would be finally released.

Conformance: This refers to the fact that current translators conform to the

standard of the language or not.

Obsolescence: This criterion shows whether the language’s standard is reviewed

periodically or not. Due to the ongoing new requirements, the language’s standards

should be reviewed and upgraded in certain periods. A major problem deals with

the existing developed programs. Modification of existing programs to make them

compatible with new standards is often time-consuming. Hence, new standards should

preserve the functionalities of current standards.

3.1.11 Cost

The cost criterion is by nature different from other criteria and is defined based

on several characteristics[32]; moreover, the impact of the mentioned language criteria

on different aspects of cost is shown in Table 1.

Table 1 Different aspects of cost and affecting criteria

Training Writing Compiling Language Poor Maintaining

and Impl. Reliability

Executing System

Readability ✓ ✓ ✓ ✓
Writability ✓ ✓ ✓ ✓
Reliability ✓ ✓ ✓ ✓
Maintainability ✓
Learnability ✓
Portability ✓ ✓
Reusability ✓ ✓
Availability of Tools ✓ ✓ ✓ ✓
Standardization ✓ ✓ ✓

Cost of training: This is described based on the readability and learnability of



16 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

the language. It also depends on the programmer’s experience. The cost of training is

strongly dependent upon whether it is based on a well-established popular language

or has a new structure. For the first case, many programmers are familiar with the

overall structure and properties of the language and training will be completed at

shorter time with lower cost.

Cost of writing programs: This cost is mainly dependent on writability of the

transformation language and the underlying tools and programming environments.

However, readability and reusability are other influencing factors.

Cost of compiling and executing: This type of cost is influenced by syntax

design, reliability, and portability. Syntax design affects on the design and cost of

translator. Reliability features usually increase execution costs due to runtime checks.

Portability often necessitates some kind of interpretation which would further increase

execution cost.

Cost of the implementation system: Free translators of a language can

be one of the factors to the acceptance and popularity of a language. A language

with a heavyweight implementation system, expensive hardware, or special software

requirements cannot be used widely. If the language tool is free and open source, and

it is portable, we consider it less costly.

Cost of poor reliability: This cost is a function of readability, writability,

reliability, availability of tools, and standardization. Standard definitions and

specifications result in consistency of the programs in different platforms.

Cost of maintaining programs: This cost is a function of corrections and

modifications to add new functionality. It is dependent to several features of a

language including readability, writability, reliability, maintainability, reusability,

availability of tools, and standardization. Among these features, readability is more

important.

3.2 Interactive and quantitative evaluation

Particularly, when a software company or organization needs an MTL for a

specific task, some candidate MTLs may be chosen. On the other hand, there exist

various stakeholders such as designer or project manager with similar or different

preferences or requirements. For example, from the quality assurance analyst point

of view, exception handling mechanisms may be of high importance. In contrast,

however, the developer or designer might prefer a language that is more writable.

As a consequence, diversity among requirements of different stakeholders makes the

choice of an appropriate MTL a challenging task. In other words, an overriding

question arises that, which MTL should be chosen to satisfy most of the

stakeholders and best fits their requirements. This issue motivated us to propose an

interactive flexible methodology that can be adjusted to quantitatively evaluate

candidate MTLs. This methodology considers several underlying parameters

efficacious in the assessment of MTLs and recommends the language with the

highest score. Different preferences of stakeholders often reflect their experience in

applying an MTL. Their requirements also reflect the underlying task at hand.

Therefore, the novelty of the proposed methodology is to exploit these pieces of

information together to assist in MTL selection. Another side of its novelty is that

it is general enough to be used with other evaluation criteria which employ different



Leila Samimi-Dehkordi, et al.: Applying programming language ... 17

sets of criteria. It can be used as a customizable decision-support system in the

context of MTLs. Figure 2 shows the process at high-level.

Figure 2. The overall decision-support methodology for MTL selection.

Given an application for a development team with model transformation tasks,

the exact steps of the process behind the proposed methodology can be summarized

as follows:

STEP 1: Various stakeholders in the team that are involved in working with

model transformations are identified. Designers, programmers, project managers,

and analysts are some examples.

STEP 2: Some MTLs according to the suggestion of stakeholders are nominated.

STEP 3: Considering the mentioned criteria and their sub-features, the

requirements of each stakeholder are determined. In particular, we define five levels

of priority (importance) for each criterion or sub-feature: inoperative, weak, typical,

high, and strong. For each stakeholder, the level of priority behind each criterion

and each of its sub-features are specified. These priorities then act as weights of

criteria and can be extended or reduced as needed.

STEP 4: A qualitative assessment of the candidate MTLs are carried out using

the mentioned criteria. The steps 5 to 9 are repeated for each stakeholder.

STEP 5: The priorities are mapped to real numbers of the range [0, 2].

Specifically, we simply assign the vector [0, 0.5, 1, 1.5, 2] to the levels of priorities

[inoperative, weak, typical, high, strong] accordingly. This assignment is natural and

intuitive. By default, the priority of every criterion is set 1.

STEP 6: The results of the qualitative assessment should be mapped to real

numbers of the range [0, 1]. To obtain the possible values of each sub-feature, we

divide the length of the range by the number of possible cases.

For example, four possible cases yield the values 0, 0.33, 0.66, and 1. In order

to map the quantitative values to qualitative cases, lower values are assigned to less

desirable cases. This choice is also delegated to the stakeholder to maintain the full

coherency of the interactive methodology. For the case of sub-features whose values



18 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

are countable or vary in a wide range, such as the number of keywords, we need to

discretize them. More precisely, the overall range is partitioned into sub-ranges and

each sub-range is classified with a qualitative label.

STEP 7: Using the Eq. (1), the score of each criterion per candidate MTL is

computed. Eq. (1) can be treated as a recursive function if a criterion consists of

multiple sub-criteria; each sub-criterion in turn consists of several sub-sub-criteria,

and so on. In this scheme, each of sub-criteria in any level can also have different

priorities.

STEP 8: Using Eq. (2), the overall score of each language is computed by

combining the scores of each criterion.

STEP 9: At this stage, the language with the highest score is recommended to

the related stakeholder. Such language has the highest conformance to the preferences

and requirements of the corresponding stakeholder.

STEP 10: Finally, the majority voting is used against the languages with highest

score which were recommended to each stakeholder, to choose the language that

maximizes the number of stakeholders.

Score(Ci,j,k) =

m

∑
l=1

w(SFi,j,k,l).v(SFi,j,k,l)

m

∑
l=1

w(SFi,j,k,l)
(1)

Score(Li,j) =

n

∑
k=1

w(Ci,j,k).Score(Ci,j,k,)

n

∑
k=1

w(Ci,j,k)
(2)

where C denotes each criterion, w denotes the weight or priority of each criterion or

sub-feature, v denotes the value of a certain feature, SF denotes each sub-feature, m is

the number of sub-features for kth criterion, n is the number of criteria, Li,j denotes

the ith language for the jth stakeholder, and Ci,j,k represents the kth criterion for

jth stakeholder and ith language. In Eq. (1), we compute the normalized average

weighted score for the kth criterion, jth stakeholder, and ith language. Similarly, the

Eq. (2) computes the normalized average weighted score for the ith language and jth

stakeholder.

The values of criteria used in Eq. (1) are normal in range [0, 1]. Dividing the

weighted sum of the numerator by sum of weights gives also a normalized value in

range [0, 1]. This is also the case for Eq. (2). Bounding the values of criteria and

intermediate scores in [0, 1] enables us to combine them mathematically. Besides, a

final score of, for example, 0.5 shows that the language in question has 50 percent of

desirability with respect to the considered requirements and preferences.

Farooq et al.[43] proposed a similar score function to evaluate PLs. However,

there exist several differences between our score function and that of Farooq et al.

For one, Eq. (1) can be used recursively for arbitrary levels of criteria. For two, it is

not restricted to a pre-defined set of criteria and has potential to be used with any

set of evaluation criteria. For three, the values of each criterion are not restricted

to four cases; it can have arbitrary value in range [0, 1]. Finally, applying such a



Leila Samimi-Dehkordi, et al.: Applying programming language ... 19

score function in evaluating of MTLs is novel in addition to employ it in our proposed

decision-support methodology.

4 Evaluation

This section is organized around a detailed study of applying the proposed

evaluation criteria and the proposed methodology on six subject MTLs: ATL, ETL,

Kermeta, QVT-O, QVT-R, and TGG. At Section 4.1, we give a brief explanation on

required experimental setup. Next, the results of evaluations of subject MTLs on 11

major criteria are presented in Sections 4.2 to 4.12. For each criterion, at first, a

detailed description of applying its sub-criteria to evaluate the mentioned languages

is given. Then, a table of the summarized results for this criterion is presented to

accompany the descriptive results. In Section 4.13, a comprehensive view of the

overall results is given. Finally, in Section 4.14, the proposed methodology is

evaluated.

4.1 Experimental setup

For experiments, we have installed a number of tools on different Win32 versions

of Eclipse. Particularly, we have installed Eclipse Luna 4.4 as a basis for ATL 3.3,

Epsilon3 V1.2, QVT declarative V 0.11, and QVT operational V 3.3. Moreover,

Eclipse Kepler 4.3 has been installed as the basis for Kermeta V 2.0.4 and eMoflon4

V 1.7.0. For EmorF5 V 0.4.2, Eclipse Juno was applied. Finally, for HenshinTGG6,

the only available version was installed. In order to find the number of keywords and

other information for each language, the corresponding reference manuals were used.

Moreover, to evaluate QVT-O and QVT-R, the QVT Version 1.2 (OMG) was used.

4.2 Readability

Simplicity: As explained in Section 3.1.1, simplicity is assessed based on basic

constructs, primitive features, and minimal operator overloading. We evaluate the

number of constructs and features based on abstract syntax for each transformation

language. ATL MM contains three packages including ATL components, OCL classes,

and primitive types. There are four primitive types in ATL: String, Boolean, int,

and double. OCL classes include primitive types that are StringType, BooleanType,

NumericType, IntegerType, RealType, to name a few. ETL, however, is specified

on top of EOL; so any primitive types are not defined specially for ETL. In EOL,

String, Real, Integer, and Boolean are defined as primitive types. EOL provides

some collection types including Set, OrderedSet, Bag, and Sequence [18]. The basic

types in Kermeta are divided into three groups: primitives, enumerations, and local

data types. Primitives contain Integer, String, and Boolean [12]. QVT languages

are defined on top of each other which contain seven MMs. The primitive types

defined in QVT are based on Java primitive types that are Boolean, Integer, Real,

String, UnlimitedNatural [13]. For TGG, there is no standard MM, because it has been

3www.eclipse.org/epsilon/
4http://www.emoflon.org/emoflon/
5http://emorf.org/index.html
6http://de-tu-berlin-tfs.github.io/Henshin-Editor/



20 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

developed by several universities; the primitive types defined in TGG-Interpreter7 are

Integer, String, and Boolean[44].

ATL supports overloading with respect to its definition. However, all operators

which are defined in the same context need to have distinct names. ETL and QVT-

O support operator overloading even within the same context. Overloading is not

allowed in Kermeta[35]. In QVT-R, overloading is supported but it does not allow

specifying context for a function. Due to the graphical nature of TGG, the semantic

of the transformation rule redefinition refers to generalization in which redefined TGG

rules extend the original rule[35].

Orthogonality: Orthogonality of a language is assessed based on

parameterization features and data type completeness. Considering the features of

parameterization, ATL supports control parameters and higher-order rules because

it is possible for ATL to load ATL programs as input models[45]. However, ATL

does not support generics. ETL rules cannot provide parameterization features, and

these features can be determined in the level of operations[46]. Kermeta can support

control parameter and generics such as generic class or generic operations but

cannot provide higher-order rules[12]. QVTs, i.e., both relational and operational

languages support simple control parameters; however, they cannot support

generics. QVT-R does not provide higher-order rules. QVT-O is able to load and

transform models conforming to QVT MM, which leads to provide higher-order

rules. TGG cannot support control parameters; however, it can provide generic

functions and higher-order rules[35]. Considering data type completeness, none of

the languages can provide this feature.

Syntax design: As explained in Section 3.1.1, this criterion is determined based

on the number of keywords, methods of forming compound statements, and possibility

of one-to-one mappings between syntax and semantic. ATL keywords are divided

into three groups8: constant keywords such as true and false, type keywords such

as Bag, or Set, and language keywords like if, foreach, and uses. The number of

keywords is 45 and 10 for ATL and ETL respectively. To note that ETL takes some

keywords from EOL and we do not consider them in our analysis. This decision is

made to manifest the difference between ATL and ETL clearer. Some examples of

ETL keywords are rule, transform, to, guard, and extends [18]. As explained before

Kermeta is a general purpose language, so it is large and it has 51 keywords such as

setter, using, until, raise, package [12]. Because of the imperative nature of QVT-O,

it is a large language with 117 keywords[13]. The samples of QVT-O keywords are

access, assert, reject, refines, and typedef. QVT-R has 15 significant keywords that

cannot be used as identifiers such as top, relation, when, where, and enforce [13]. TGG

is a graphical language without any standard definition, so we can assume it has no

significant keywords. This decision roots from the graphical nature of TGG which

is substantially different from other subject MTLs. Another option is to consider

the graphical representations as symbols of that language. However, as we are not

investigating a certain TGG language, the former case is used.

In ATL, there exist several ways to define a compound statements. The condition

statement in ATL can be specified by if which evaluates a condition; this condition

7http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter
8https://wiki.eclipse.org/ATL/User Guide - The ATL Language#ATL Keywords



Leila Samimi-Dehkordi, et al.: Applying programming language ... 21

should be defined as an OCL expression. Since it is possible to define some statements

in the then clause, ATL can support different ways of forming compound statements

such as specifying nested condition or loop statements. It is worth to mention that

ATL uses for statements to define loops.

ETL provides EOL different statements such as if and switch for defining

conditional statements and for, foreach, and while for specifying looping statements.

Because it is similar to Java PL, it can support several ways for forming compound

statements[18]. Kermeta is an object-oriented PL which provides block, conditional,

and loop statements by do, if/else, and until keywords[12]. QVT-O can specify block

statements by do/end blocks, conditional statements by if/elif/else, switch clauses

and loop statements by foreach, forone, compute and while expressions[13]. QVT-R

and TGG can only uses OCL expressions such as if and let expressions, so they are

very limited in this case.

Since all MTLs are defined on top of the OCL language or use it, and there is no

one-to-one mapping between syntax and semantic of OCL expressions, they cannot

support form and meaning feature. For example, for determining an undefined object,

it is possible to use isUndefined() operation or not isDefined().

Syntactic separation: Syntactic separation is provided by ATL rules because

of its hybrid style. This is achieved by from/to keywords in ATL. ETL has also a

hybrid paradigm that it can support syntactic separation with the use of to keyword.

Due to the imperative nature of Kermeta and QVT-O, they do not provide syntactic

separation; similar to traditional PLs, in Kermeta, operating parts of source and

target domains are mixed. In QVT-O mappings, the left side of an expression is

the target element and the right-hand side addresses source elements. However, this

language cannot provide clear separation. QVT-R is able to specify rules with clear

separation between source and target operating parts because its style is declarative.

Similar to QVT-R, TGG is a declarative language which provides clear separation due

to the fact that both models have distinct parts. The degree to which TGG supports

this feature is higher as compared to other subject MTLs.

Application condition: Except for Kermeta, other subject MTLs support

application condition. In ATL programs, it is possible to create Boolean expressions

inside from block of the rule which are executed if the specified condition becomes

true. ETL supports this feature by defining condition in the guard block of the

rules. Application condition is provided by QVT languages via defining conditions

in the when clauses. In TGG rules, one can specify OCL condition to support this

feature. Since ATL and ETL support this feature explicitly in the rule, they are

stronger than other languages.

Rule scheduling: In ATL, form of scheduling is implicitly supported by

matched rules, and it is possible to explicitly invoke some rules from other rules.

Similar to ATL, ETL supports this feature as a mix of implicit/explicit scheduling;

In the pre/post blocks, user-defined operations, and pre-defined methods such as

satisfies(), the ETL rules can be explicitly called. Kermeta rule scheduling is

specified by developer explicitly. The rule scheduling form in QVT-O is defined

explicitly and internally because of its imperative paradigm. In QVT-R, at first all

top relations are executed, and then they are followed by the rules specified in the

when clauses, so the form is determined implicitly. However, it is possible to call a



22 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

rule from another one, which enables developer to schedule rules explicitly. TGG

uses layering for external rule scheduling[36].

Domain body: Domain body is investigated from variable, pattern, and logic

viewpoints. In all languages, meta-variables are considered. The structure of all

languages except TGG is term-based. The abstract syntax of each language is

specified as a MM. The concrete syntax of all languages except TGG is textual;

however, OMG specify a graphical concrete syntax for QVT-R that its tools have

not yet implemented graphical concrete[13]. It is worth to mention that ATL, ETL,

and QVT-R have clearer textual syntax than Kermeta and QVT-O. Element

creation in QVT-O, Kermeta, and TGG is explicitly specified; other languages

implicitly create elements. ATL, ETL, QVTs, and Kermeta specify values by

imperative assignment, which is more preferable method. TGG specify values by

value binding.

Tracing: All of the subject MTLs except Kermeta offer dedicated support for

tracing. Because of imperative paradigm of Kermeta, it is possible to implement some

structures to support traceability. All subject MTLs, which have dedicated support

of traceability, keep trace information in a separate model.

The summary of evaluations for the sub-criteria of readability is demonstrated

in Table 2.

Table 2 The results of evaluating subject MTLs on the sub-criteria of

readability; (not supported) < (partially supported) < (highly supported)

Sub-criteria ATL ETL Kermeta QVT-O QVT-R TGG

Simplicity (#primitives) 9 0 5 5 5 3

Simplicity (Minimal overloading)

Orthogonality (Control parameters)

Orthogonality (Generics)

Orthogonality (Higher-order rules)

Orthogonality (Data type completeness)

Syntax design (#Keywords) 45 10 51 117 15 0

Syntax design (Compound statements)

Syntax design (Syntax and semantic)

Syntactic separation

Application condition

Rule scheduling

Domain body (Variable)

Domain body (pattern-structure) Term Term Term Term Term Graph

Domain body (pattern-abstract syntax)

Domain body (Pattern-concrete syntax)

Domain body (Logic-value specification)

Domain body (Logic-element creation)
Implicit Implicit Explicit Explicit Implicit Explicit

Tracing (dedicated support)

Tracing (Separate model)

4.3 Writability

The evaluation of subject MTLs for writability sub-criteria is demonstrated in

the course of this Section. Note that some of the sub-criteria are explained in the



Leila Samimi-Dehkordi, et al.: Applying programming language ... 23

Section 4.2.

Simplicity and orthogonality: These two criteria are assessed based on several

features. In this Section, we only show the results of evaluation by comparing the

subject MTLs. From the number of primitive’s point of view, all subject MTLs

provide acceptable number of primitives. Among them ETL is the simplest which only

use EOL structures and does not define new primitive types. In contrast, ATL defines

9 different primitive types. From the orthogonality point of view, all MTLs except

ETL can be considered in the same situation; however, ETL is not an orthogonal

MTL.

Syntax design: As explained before, ATL, Kermeta, and specially QVT-O are

large languages with several keywords. However, ETL and QVT-R are smaller which

defines small number of keywords and uses the keywords of their host languages. Since

TGG is not a textual language, it does not use any words to define transformation

rules. Considering compound statements all subject MTLs except declarative ones

provides several ways to form compound statements which lead to high expressivity

and simple writability.

Abstraction: Abstraction is determined based on supporting specification of

abstract rules, operation overloading, simplification, selection, generalization,

reflection, aspect, and modularity.

Concerning abstract rules, all subject MTLs except QVT-R support this type of

abstraction[35]. Regarding operation overloading, ETL and QVT-O provide complete

support. However, ATL and QVT-R provide limited support to this feature.

QVT-R and TGG support simplification by abstracting from control flow[36].

ATL provides this feature with the use of helper functions and attributes. ETL

also is the same as ATL which can abstract from the control flow by the means of its

declarative part of style. However, Kermeta and QVT-O cannot support simplification

because of their imperative syntax.

Due to the existence of selection feature, TGG can define correspondence nodes

on a certain part of MMs[36]. However, other languages cannot support this feature.

Concerning generalization, Kermeta can provide generic types to support

generalization and the eMoflon implementation of TGG has also provided

genericity[36].

Reflective access to transformation is allowed by ATL during execution[33].

ETL inherits reflection from its host language. The reason why Kermeta is able to

support reflection can be attributed to its special style, which is known as an

aspect-oriented language[12]. QVT-O provides reflection support that offers to

access trace information[16]. Reflection is explicitly supported by TGG with the use

of Story Driven Modeling[35].

From the modularity point of view, ATL can keep frequently used helpers in

libraries to reuse them in other modules. However, ATL modules cannot be reused in

other modules. Hence, in ATL, only using helper functions can lead to modularity[10].

In ETL, it is possible to organize rules in one module and import that module in

another one[46]. Kermeta offers to organize transformations into classes that it is

possible to split a transformation into different files[12]. In QVT-O, transformations

can be reused by access and extend mechanism which are similar to import facility of

PLs and inheritance property of object-orientation respectively[35]. QVT-R supports



24 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

modularity by importing or extending QVT transformation and using its rules in when

or where clauses[35]. TGG can merge the high-level rule type from one transformation

with that low-level type in a new one[35]. The results of evaluation of abstraction are

summarized in Table 3.

Expressiveness: Expressiveness is defined based on Turing-Completeness and

having the appropriate and natural ways to define algorithms. As mentioned, ATL

and ETL are multi-paradigms, or hybrid, which involve imperative paradigm as

well. In imperative paradigm, there are appropriate ways to explain how to express

algorithms. They are general rule-based languages which are Turing-complete. ATL

uses global helpers or lazy rules to support recursion; looping in ATL needs to have

bounded number of steps. ATL is a unidirectional language which has low expressive

power in bidirectional applications. ETL is defined on top of EOL, which support

unbounded looping and recursion. Kermeta and QVT-O are imperative languages

that provide Turing-Completeness, and unbounded recursion. For the case of

QVT-O, unbounded looping is not supported. These two imperative languages

cannot be applied in bidirectional case studies. QVT-R is a bidirectional rule-based

language which has declarative style; it is possible to call QVT operational

mappings from QVT-R transformations that result in Turing-Completeness. It can

support unbounded recursion but does not provide looping.

Table 3 The results of evaluating subject MTLs on abstraction criteria;

(not supported) < (partially supported) < (highly supported)

Abstraction sub-features ATL ETL Kermeta QVT-O QVT-R TGG

Abstract rules

Operator overloading

Simplification

Selection

Generalization

Reflection

Aspect

Modularity

For TGGs it turns out that there are challenges to their expressive power[14].

Expressive power is one of the four design principles that a useful TGG should not

violate. To our knowledge, none of the TGG approaches and the corresponding

algorithms satisfies all four properties. Often in practice, the designer had to trade

one property for another.

Concerning incrementality, ATL and ETL cannot provide any support.

Kermeta and QVT-O do not also offer incrementality by default. However, because

of their imperative nature, it is possible to load the existing target model and

update as desired which leads to target-incrementality. There is no any way to

implement source-incrementality by these imperative languages. QVT-R can

support target-incrementality to provide change propagation, but it cannot preserve

user updates in the target. It does not offer source-incrementality. TGG inherently

support incrementality in both directions, but some of its tools like EmorF do not

implement incrementality in their transformation engines[30]. Table 4 (upper part)

denotes the summary of evaluation for expressiveness.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 25

Table 4 The results of evaluating subject MTLs on expressiveness and

tracing; (not supported) < (partially supported) < (highly supported)

Expressiveness sub features ATL ETL Kermeta QVT-O QVT-R TGG

Turing completeness

Natural for applications

Bidirectionality

Incrementality

Tracing sub feature ATL ETL Kermeta QVT-O QVT-R TGG

Dedicated support

Automatic creation

Syntactic separation and application condition: TGG can completely

separate the source operating part from the target. After TGG, QVT-R, ETL, and

ATL support this feature in the second place. ATL and ETL support application

condition explicitly, which has some effects on the simplicity of the writability. The

imperative languages, i.e., QVT-O and Kermeta cannot support syntactic

separation and application condition.

Rule scheduling: As explained before, when the scheduling of the rules is

determined implicitly, the language can be more writable. The two hybrid languages

and QVT-R can schedule the rules implicitly. However, Kermeta and QVT-O need

to specify scheduling explicitly and TGG schedules rules externally.

Domain body: Writability improves if element creation is carried out implicitly.

Hence, ATL, ETL, and QVT-R would be more writable with respect to this point.

Readability was described in Section 4.2.

Tracing: If the tracing information can be generated automatically without

using any piece of code, the language will be more writable. As a consequence, ATL,

QVTs, and TGG can be considered more writable from the trace creation point of

view. ETL offers a trace MM, and some statements to support generation of trace

models, but Kermeta does not provide any facilities for tracing. Table 4 (lower part)

show the summary of results.

4.4 Reliability

In this Section, the evaluation of these sub-criteria is determined for six subject

MTLs.

Readability and writability: Since reliability is dependent upon two major

criteria, readability and writability, we introduce majority support ranking strategy.

Majority support ranking strategy (MSR): In this strategy, the

sub-criteria of the concerning criteria (e.g. readability) are listed. Then, we specify,

for each subject MTL, whether it completely supports each sub-criterion (support)

or it does not provide that feature at all (not support). Next, we count the number

of support situations and not support cases for each language. The languages are

sorted in ascending order based on the number of support situations. In case of a tie

in the number of support situations for two languages, they are analyzed based on

the number of not support cases.

The result of applying MSR strategy on readability is depicted in Table 5. For

application condition, ATL and ETL are considered as support and Kermeta as not



26 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

support because the first two MTLs support application condition completely and

Kermeta does not provide at all. Other subject MTLs are neither support nor not

support. At this point, we can measure the subject MTLs from readability point of

view: QVT-R = 7 < ETL = 8 < ATL, Kermeta = 9 < TGG = 10 < QVT-O. Due to

the MSR strategy, QVT-O gains first place. The second and third places go to TGG

and ATL, respectively. ETL and Kermeta gain the fourth place with Kermeta to be

superior to ETL due to its smaller losing value. QVT-R gains the last place.

Table 5 The results of evaluating subject MTLs on readability and writability

for reliability using MSR strategy

Feature of Readability Support Not support

Simplicity (#primitives) ETL, TGG ATL

Simplicity (Minimal overloading) Kermeta ETL, QVT-O

Orthogonality (Control parameters) ATL, Kermeta, QVT-O, QVT-R ETL, TGG

Orthogonality (Generics) Kermeta, TGG
ATL, ETL,

QVT-O, QVT-R

Orthogonality (Higher-order rules) ATL, QVT-O, QVT-R, TGG ETL, Kermeta

Orthogonality (Data type completeness) - All languages

Syntax design (#Keywords) QVT-O TGG

Syntax design (Compound statements) ATL, ETL, Kermeta, QVT-O QVT-R, TGG

Syntax design (Syntax and semantic) - All languages

Syntactic separation TGG Kermeta, QVT-O

Application condition ATL, ETL Kermeta

Rule scheduling Kermeta, QVT-O, TGG -

Domain body (Variable) All languages -

Domain body (Pattern-structure) - -

Domain body (Pattern-abstract syntax) ATL, ETL, Kermeta, QVT-O, QVT-R TGG

Domain body (Pattern-concrete syntax) TGG Kermeta, QVT-O

Domain body (Logic-value specification) ATL, ETL, Kermeta, QVT-O, QVT-R -

Domain body (Logic-element creation) Kermeta, QVT-O, TGG -

Tracing (Dedicated support) ATL, ETL, QVT-O, QVT-R, TGG Kermeta

Tracing (Separate model) ATL, ETL, QVT-O, QVT-R, TGG -

Analysis (readability) ATL ETL Kermeta QVT-O QVT-R TGG

#Support cases 9 8 9 11 7 10

#Not support cases 4 5 7 6 4 6

Analysis (writability) ATL ETL Kermeta QVT-O QVT-R TGG

#Support cases 14 17 14 14 14 14

#Not support cases 9 10 14 12 8 11

Concerning the writability criterion, the same process of the proposed strategy is

repeated. After measurement the supports and not supports cases for each language,

the results are demonstrated in Table 5 (bottom). By sorting the languages the

following result is obtained: ATL, Kermeta, QVT-O, TGG, QVT-R = 14 < ETL =
17. It turns out that ETL gains the first place. However, for the rest of the languages

that the number of their support is equal, the number of losing cases is analyzed.

Since the losing value of QVT-R is smaller, it achieves the second place. ATL, TGG,

QVT-O, and Kermeta achieve the third, fourth, fifth, and sixth place, respectively.

Rule application strategy: ATL and ETL provide location determination in a



Leila Samimi-Dehkordi, et al.: Applying programming language ... 27

deterministic way[10,45]. In Kermeta terminology, rules are interpreted as operations

and developers must decide which operation is executed at specific point; therefore

determining the value for Kermeta does not make sense[45].

In QVT-O, there is only one entry point for each process, so its strategy is

deterministic[46]. QVT-R also offers a deterministic strategy; in the first step all top

rules are executed and their order is determined based on the defined when clauses.

TGG can provide a deterministic strategy, which is performed based on the

traceability links.

Exception handling: ATL, ETL, and imperative languages, i.e., Kermeta and

QVT-O can handle exceptional transformations that need to be specified explicitly by

the user. Since ETL is able to use EOL statements, it is possible to throw exceptions

like Java exceptions[18]. Kermeta can support exception handling like other object-

oriented PLs[12]. QVT-O can evaluate a condition and throw exceptions[23]. QVT-R

medini tool can specify a run-time exception handling that prints the message of error

with the number of erroneous line[17]. TGG cannot support exception handling.

Aliasing: Aliases can occur in ATL, ETL, Kermeta, and QVT-O due to their

imperative paradigm, however, TGG and QVT-R cannot provide aliasing. Therefore,

these two declarative languages can be more reliable.

Domain typing: All languages support domain typing syntactically. ATL

compiler does not check typing in the compile time, and all the type checking is

performed dynamically[47]. ETL compiler behaves the same as ATL. However,

Kermeta is a strongly typed language in which all types are checked at compile time

and the syntax is annotated with information of type[47]. QVT languages provide

weak type checking statically. Some parts of these languages that are defined based

on the OCL language are strongly typed, because OCL is strongly typed[48]. TGG

provides static type checking but it is not strongly typed[35]. The overall results of

reliability are outlined in Table 6.

Table 6 The overall results of evaluating subject MTLs for reliability; (not

supported) < (partially supported) < (highly supported)

Sub Criteria ATL ETL Kermeta QVT-O QVT-R TGG

Readability QVT-R < ETL < Kermeta < ATL < TGG < QVT-O

Writability Kermeta < QVT-O < TGG < ATL < QVT-R < ETL

Rule strategy

Exception handling

Aliasing Yes Yes Yes Yes No No

Domain typing

4.5 Maintainability

Maintainability is determined based on readability, size of transformation, its

complexity, and abstraction. The size of transformation is assessed based on lines of

transformation code.

The complexity is evaluated by the total number of occurrences of operators,

features, operations and rule calls. To compute the size and complexity, we consider

the example of class diagram to database schema transformation[49], and we simplify

it to only three rules which are package to schema, class to table, and single-valued



28 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

attribute to column. The solution of the case study can be found from the published

specifications for subject MTLs: ATL[50], ETL[18], Kermeta[12], QVT-O[13], QVT-

R[13], and TGG[51].

Readability and abstraction: Readability has a direct effect on the

maintainability. The MSR strategy can be used to determine which languages have

high readability leading to high maintainability. Applying the proposed strategy on

readability studied in measuring Section 4.4: QVT-R < ETL < Kermeta < ATL <
TGG < QVT-O.

Abstraction has been completely discussed in Section 4.3. It has explained that

all subject MTLs except QVT-R support definition of abstract rules. Abstraction by

simplification is provided by two hybrid languages and two declarative ones. Only

TGG can provide selection. ATL and QVT-R cannot offer generalization; however,

the rest of the languages provide it. Kermeta supports reflection, aspect, and

modularity. Modularity is also provided by ETL and QVT languages completely.

Size: The lines of code (LOC) is not a precise feature, however, it is possible to

have a rapid analysis for computing the size. The size computation is demonstrated

in Table 7 (upper part). Due to the graphical nature of TGG, lines-of-code is not

a proper measure to take. Instead, we compute the number of object creation, and

OCL constraints or assignments. As the Table 7 shows, ATL, ETL, and QVT-O have

small (reasonable) sizes, TGG is larger with a medium size, and Kermeta and QVT-R

are large with major difference in sizes.

Complexity: Complexity is assessed by the number of operators, features,

operations, and rule calls. The obtained results of investigating the complexity are

shown in Table 7 (lower part). Overall, the results suggest that ATL and ETL are

less complex than QVT-O, QVT-R, and TGG. Kermeta is the most complex one.

Table 7 The results of evaluating subject MTLs on (size, complexity) criteria;

(small, low) < (medium, mediocre) < (large, high)

Size ATL ETL Kermeta QVT-O QVT-R TGG

Package to schema 6 4 14 4 9 7

Class to table 6 6 14 7 18 9

Attribute to column 7 7 12 5 23 9

Total 19 17 40 16 50 25

Analysis

Complexity ATL ETL Kermeta QVT-O QVT-R TGG

#Operators 8 8 34 16 22 19

#Features 14 12 13 11 18 12

#Calls 1 1 3 3 4 0

Total 23 21 50 30 44 31

Analysis

4.6 Learnability

As it has been stated, learnability is assessed by three features: learning curve,

language size, and maturity.

Learning curve: To analyze learning curve, it is required to determine who

wants to work with the language. From the object-oriented programmer point of



Leila Samimi-Dehkordi, et al.: Applying programming language ... 29

view, Kermeta is easier to learn because it uses the syntax of Eiffel languages and is

also Java-like. OCL-like syntax makes ATL, QVT-O, and QVT-R more preferable.

ATL is superior to the other two languages, because it utilizes the expressiveness

of QVT-O resultant from its imperative-style along with the simplicity of QVT-R

which is due to its declarative-style. ETL is a Java-like language defined on top of

EOL which is itself OCL-like. In fact, among the mentioned languages, ETL has a

low learning curve that leads to high learnability.

TGG requires learning and working with specific formalism. Declarative

languages determine what should be mapped by the transformation specification,

and they do not provide the control flow to specify how the transformation should

be executed. Therefore, the cost of training of these languages will increase.

Language size: The language size is evaluated based on the subject MTLs’

MMs. To this end, number of classes, properties, and associations are computed.

Number of keywords is considered as another feature and is demonstrated in

Table 8. ATL MM contains three packages including ATL classes, OCL, and primitive

types. ATL package contains nine classes, and OCL package includes 56 classes.

The most important ATL classes which are related to transformation definition are

LocatedElement, Rule, and VariableDeclaration. The classes of OCL packages are

related to different kinds of expressions such as OCL, numeric, primitive, collection,

loop, property call, and operation call expressions. ETL MM is defined on top of EOL

MM that it contains only eight classes ETLModule, NamedBlock, TransformationRule,

and Guard to name a few. These classes use six EOL classes which lead to a total of

14 classes in ETL[18]. QVT languages are defined on top of each other which contain

seven MMs[13]. QVT-O MM is defined based on six other packages including EMOF,

ImperativeOCL, EssentialOCL, QVTBase, QVTRelation, and PrimitiveTypes. QVT-

O, itself, contains 22 classes, which are only related to the transformation components

and uses 18 classes of other MMs. QVT-R MM is specified based on three other MMs

named EMOF, EssentialOCL, and QVT-base. The MM, itself, contains only nine

classes, and uses 15 classes of aforementioned packages. There is no standard MM

for TGG, and each TGG tool use its own MM. To compute the language size, we

consider the Henshin9 TGG MM.

Table 8 The results of evaluating subject MTLs on language size; (small) <
(medium) < (large) < (very large)

Language size ATL ETL Kermeta QVT-O QVT-R TGG

#Classes 65 14 32 40 24 31

#Properties 24 0 11 11 1 105

#Associations 81 17 25 41 20 46

#Keywords 45 10 51 117 15 0

Overall 215 41 119 219 60 182

Analysis

Maturity: The first version of ATL was released in 2003[52]. Then, it was

followed as an Eclipse project in 2006. There exist more than 100 industrial and

academic case studies which are implemented by ATL. Due to long history, deeper

9http://de-tu-berlin-tfs.github.io/Henshin-Editor/



30 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

experience in terms of available formal case studies[73], and consequently higher

maturity, ATL can be considered as baseline for comparison. The ATL forum10 is

still active and has been separated since 2012; before that there was one single

forum for all M2M transformation Eclipse projects. In ATL forum, there exist more

than 2390 messages. ETL has been available since 2008[20] yet there is not large

number of transformation case studies by this language. The Epsilon forum11 has

been active since 2011 with more than 7180 messages. The first version of Kermeta

has been reported since 2005 until 2012 with more than forty case studies[17].

Kermeta forum12 with 413 messages has not been active since 2014.

For the case of QVT languages, several tools have implemented these languages.

SmartQVT is an inactive QVT operational tool that its last release happened in

2008. Eclipse QVT-OML was migrated from GTM/UMLX project in 2008 and its

last version is released in 2015, which shows its activeness. QVT-OML forum13 has

been activated since 2012 with more than 780 messages. Medini is another QVT tool

which has implemented QVT-R between 2007 and 2011. It has twenty published case

studies[17]. Eclipse QVT-Declarative has been in the incubation phase since 2012 but

its forum has been activated since 2012.

TGG has six tools: eMoflon (2012 to now) with issue tracker page and available

contact email, TGG-Interpreter (2006–2011) with contact email, HenshinTGG (2012

to now, 2015) with issue page and several case studies, MoTE14 (2007–2012) without

any support, ATOM315 (until 2002) without any support, and EMorF (2011 to 2012)

with contact email. So the number of years is estimated between three to five with

several case studies, and active support for at least two tools.

The number of years for history can be divided into three groups: less than four

years, four to eight years, and more than eight years[17]. The results of three features

are shown in Table 9. As a consequence, ATL and ETL are the most learnable

languages among other languages. After that, QVT-O and Kermeta have reasonable

values of learnability. Finally, learning QVT-R and TGG spends much time and cost.

Table 9 The results of evaluating subject MTLs on maturity

Maturity ATL ETL Kermeta QVT-O QVT-R TGG

History of use 12 years 7 years 7 years 9 years 4 years 5 years

Support for case studies High Low Medium Medium Low Medium

Technical support High High Low High Low Medium

4.7 Generality

All subject transformation languages offer exogenous model transformations as

well as support for M-to-N cardinality transformations and all technical spaces

including EMF, XMI, and XML. As stated, ATL provides dedicated support for

traceability but it does not offer multidirectionality and change propagation[53].

10https://www.eclipse.org/forums/index.php/f/241/
11https://www.eclipse.org/forums/index.php/f/22/
12https://gforge.inria.fr/forum/?group id=32
13https://www.eclipse.org/forums/index.php/f/244/
14https://www.hpi.uni-potsdam.de/giese/public/mdelab/mdelab-projects/mote-a-tgg-based-model

transformation-engine/
15http://atom3.cs.mcgill.ca/



Leila Samimi-Dehkordi, et al.: Applying programming language ... 31

Among four operations, Create, Read, Update, and Delete (CRUD), it can offer the

first three ones. ATL transformations can be defined and executed by two modes[10]:

normal or refining mode. Refining mode allows endogenous transformations such as

refactoring and refinement. Model comparing is not supported directly by ATL, but

Atlas Model Weaver[54], which can be integrated with ATL, supports model

comparing, weaving, and merging. AMW has not been updated since 2008; hence, it

cannot be used with new releases of Eclipse. Since ATL is defined based on the OCL

language, it inherently offers model validation. Model-to-text transformations

cannot be implemented by ATL, but it can be integrated with Acceleo, that both

projects are developed by obeo16 model-driven company.

ETL offers traceability, but not bidirectionality and change propagation. It

only supports Read and Create operations. It does not provide any other features

but can be integrated with other Epsilon languages including Epsilon Wizard

Language (EWL) for in-place updates, Epsilon Merging Language (EML) for model

merging, Epsilon Comparison Language (ECL) for model comparing, Epsilon

Validation Language (EVL) for validating, and Epsilon Generation Language for

code generating.

Kermeta does not offer facilities for traceability and multidirectionality. Since it

is target-incremental, it can provide change propagation to the target side.

Moreover, it supports all of the CRUD operations in addition to providing in-place

updates including refactoring and refinement. However, Kermeta cannot support

model merging. Further, no plug-in or tool exists in Kermeta Model Development

Kit17 (MDK) that can integrate with Kermeta. Additionally, there is no context

about the ability of Kermeta in model comparing, but because of its style it seems

this feature is allowed. Finally, Kermeta offers model checking in its beta version to

support model validation that can be integrated with Kermeta Emitter Template18

(KET) and template-based text generator to support code generation.

QVT-O provides traceability and propagating changes to the target side, and

complete support of CRUD. Although it cannot support endogenous

transformations[55], but model merging is offered[13]. Since it is specified based on

OCL components, model validation is allowed by QVT-O. QVT-R supports

bidirectionality, dedicated traceability, change propagation to both sides of

transformation, complete CRUD operations, in-place transformations[13], model

comparing, and merging[56]. Because QVT-R transformations perform consistency

checking before enforcement, model validation is supported by this language. TGG

provides bidirectional transformations, trace information, model synchronization

leading to change propagation, complete support for CRUD operations, and in-place

transformation19. Model merging and comparing could be possible by TGG[57];

however, no effective solution has been implemented yet. Model validation can be

performed by story diagrams; MoTE TGG tool can generate story diagrams from

TGG rules leading to model validation. eMoflon proposes a solution for

model-to-text transformation. Table 10 summarizes the results. It turns out that

QVT-R and TGG are the most general languages. Then, QVT-O and Kermeta gain

16http://www.obeo.fr/
17http://www.kermeta.org/mdk/
18http://www.kermeta.org/mdk/ket
19www.emorf.org



32 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

the third and fourth positions, respectively. Next, the fifth place goes to ATL. ETL

is specifically for out-place exogenous M2M unidirectional transformations. The

features of generality are supported by Epsilon family languages, therefore

stand-alone ETL cannot provide generality.

Table 10 The results of evaluating subject MTLs on generality

Generality ATL ETL Kermeta QVT-O QVT-R TGG

Source cardinality Many Many Many Many Many Many

Target cardinality Many Many Many Many Many Many

Technical Space

(EMF/XMI/XML)
✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Bidirectionality 7 7 7 7 ✓ ✓
Traceability ✓ ✓ 7 ✓ ✓ ✓
Change propagation 7 7 ✓ ✓ ✓ ✓
CRUD transformations ✓✓✓7 ✓✓77 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓
Endogenous transformation ✓ EWL ✓ 7 ✓ ✓
Exogenous transformation ✓ ✓ ✓ ✓ ✓ ✓
Model merging AMW (old releases) EML 7 ✓ ✓ 7

Model comparing AMW ECL ✓ ✓ ✓ 7

Model validating ✓ EVL ✓ ✓ ✓ ✓
Integrated to code generator Acceleo EGL KET Acceleo 7 eMoflon

4.8 Portability

According to what was stated in background, there are several tools for each

subject MTL. However, we only consider those tools that can be installed as plug-ins

on Eclipse IDE. Eclipse can be executed on different platforms. As such, the subject

tool (plug-in) can be portable on several platforms (hardware or operating system).

Due to the diversity of Eclipse versions, we consider the last six versions including

Helios (H), Juno (J), Indigo (I), Kepler (K), Luna (L), and Mars (M). Then, for each

transformation tool, we check whether it can be installed on each version. ATL and

QVT-OML tools are implemented as the Eclipse MMT project; so they are available

as soon as Eclipse version is released. The last version of Epsilon based on Mars

has not been released yet (at the time of writing this paper). Kermeta has not been

updated after Kepler and QVT-R after Indigo. TGG has been followed through six

tools that they have not been active for a long time. For example, AToM3 cannot be

installed on these versions anymore. MoTE and TGG-Interpreter can be installed on

only Helios version. The Juno version supports EMorF, and HenshinTGG is provided

on Luna. Table 11 summarizes the results.

Table 11 The results of evaluating subject MTLs on portability

Portability ATL ETL Kermeta QVT-O QVT-R TGG

Hardware (32/64bit) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
OS (Win/Linux) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
Version (H/J/I/K/L/M) ✓✓✓✓✓✓ ✓✓✓✓✓7 ✓✓✓✓77 ✓✓✓✓✓✓ ✓✓✓777 Only one1

1Each of the six tools can be installed on just one IDE



Leila Samimi-Dehkordi, et al.: Applying programming language ... 33

4.9 Reusability

Reusability is affected by abstraction, rule inheritance, higher-order rules, and

composition. ATL can only support single inheritance. ETL, Kermeta, QVT-O, and

TGG provide multiple inheritance[8]. However, QVT-R cannot support

inheritance[45]. Among the subject MTLs, ATL, QVT-O, and TGG support

higher-order rules[35]. To support composition, ATL and ETL provide lazy rules.

ETL also specifies satisfies, and satisfiesAll functions to compose transformation

rules and uses pre/post blocks. Composition specification in Kermeta and QVT-O is

explicitly performed by the means of imperative statements. In QVT-R,

composition is possible with the use of when and where clauses. In ATL, ETL, and

QVT-R if there is no explicit use of composition, it is performed implicitly. TGG

uses layering to specify composition externally[36]. The results for reusability are

depicted in Table 12.

Table 12 The results of evaluating subject MTLs on reusability; (low) <
(medium) < (high) < (very high)

Abstraction sub-features ATL ETL Kermeta QVT-O QVT-R TGG

Abstraction (Abstract rules)

Abstraction (Overloading)

Abstraction (Simplification)

Abstraction (Selection)

Abstraction (Generalization)

Abstraction (Reflection)

Abstraction (Aspect)

Abstraction (Modularity)

Rule inheritance

Higher-order rules

Composition

4.10 Availability of tools

ATL IDE contains editor, compiler, and debugger. The transformation engine

of ATL must compile the ATL code into a byte code that is executed by the ATL

virtual machine (EMF VM). An outline view, syntax highlighting, and error

reporting are provided by ATL editor. ATL IDE plug-in is available in the Eclipse

Modeling Tool, which is needed for all model transformation Eclipse plug-ins. ATL

is developed by Obeo Company as the MMT Eclipse project, which can be

considered as a sponsorship. Three versions of this tool have been released since

2013.

ETL is one of the proposed languages by Epsilon. The Epsilon tools, Exeed

editor, ModeLink (weaver), and Workflow are only some of the tools that are

developed besides Epsilon languages. ETL is able to use Java statements and can be

used in Java programs. Epsilon does not offer a debugger for ETL or other family of

languages. It is necessary to install GMF and Emfatic projects before Epsilon

installation20. Therefore, the number of Epsilon requirements is three (GMF,

Emfatic, and Epsilon). Three versions have been released since 2013.

20https://www.eclipse.org/epsilon/download/



34 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

Kermeta provides an editor with syntax highlighting and auto-completion, and

a perfect debugger. It can be easily installed without any requirements on Eclipse.

However, there is no sponsorship for Kermeta and it has not been developed since

2012. QVT-OML plug-in tool is available in the Eclipse Modeling tool. Its editor

provides syntax highlighting, an outline view, and error detection. There is no

debugger for QVT-OML. The language is supported by OMG and developed by

Willink Transformations Ltd.21 There are four release versions for QVT-O.

QVT-Declarative is also supported by OMG and developed by Ed. Willink in the

Eclipse Modeling tool. However, it is in the incubation phase and there is no

compiler or interpreter for it. The newly TGG tool is HenshinTGG which is

available for Eclipse Luna (4.4). It is required to install Eclipse Modeling Tool, GIT

plug-in, and Zest22. It is needed to perform a number of settings. There is no

sponsorship for HenshinTGG. The tool provides user-friendly editor with model

validating. It provides a debugging process for single forward rules[58]. The

summarized results have been shown in Table 13.

Table 13 The results of evaluating subject MTLs on availability of tools;

(low) < (medium) < (high)

Availability of Tools ATL ETL Kermeta QVT-O QVT-R TGG

Translator

Editor

Debugger

Easy installation 1 3 1 1 1 4

History of use 12 years 7 years 7 years 9 years 4 years 5 years

Support for case studies High Low Medium Medium Low Medium

Technical support High High Low High Low Medium

4.11 Standardization

Due to the timeliness feature of standardization, QVT languages are

early-standardized. OMG proposes QVTs since 2001. ATL is a QVT-like syntax

language that has been proposed as an answer to the OMG QVT Request for

Proposals (RFP); it is timely-standardized. ETL and Kermeta are timely-

standardized because their abstract syntax MMs have been standardized after few

years of language design. TGG is lately-standardized for model-driven context

because it was firstly proposed by Andy Schürr in 1994[59]. Concerning

conformance, only QVT-R translator cannot conform to the whole language

standard[25,60]. ATL, ETL, QVT-O are the languages that are upgraded due to

Eclipse development standards. However, for QVT-R, there is still no effective

Eclipse translator to be upgraded and other implementations such as ModelMorf

and Medini are outdated. Kermeta has not upgraded since 2012, notwithstanding

Eclipse modeling tools and frameworks have been upgraded since 2014. The

aforementioned TGG tools either have not been upgraded or have been developed

newly. Table 14 shows the results.

21http://www.edwillink.plus.com/willinktransformations/index.html
22https://github.com/de-tu-berlin-tfs/Henshin-Editor/wiki/Install HenshinTGG



Leila Samimi-Dehkordi, et al.: Applying programming language ... 35

Table 14 The results of evaluating standardization of subject MTLs

Standardization ATL ETL Kermeta QVT-O QVT-R TGG

Timeliness Timely Timely Timely Early Early Lately

Conformance Yes Yes Yes Yes No Yes

Obsolescence Upgraded Upgraded Outdated Upgraded Outdated Outdated

4.12 Cost

Since the cost criterion is related to all of the mentioned criteria, we first apply

the MSR strategy (see Section 4.4) on all subject MTLs based on the

aforementioned criteria including readability, writability, reliability, maintainability,

learnability, generality, portability, reusability, availability of tools, and

standardization. This leads to establish a separate ranking with at most six places

among subject MTLs with respect to each criterion. The results are presented in

Table 15. In the next stage, six costs were defined in increasing order according to

six ranking places. A cost of +1 is the lowest cost for the language with highest

rank. A cost of +6, which is the highest cost, goes to the language with lowest rank.

For example, the cost of ATL for readability is +3 since it is the third place.

Similarly, the cost of TGG is +5 with respect to learnability. At this point, the costs

of all subject MTLs with respect to each major criterion have been determined.

Table 15 The results of evaluating subject MTLs on cost criterion using MSR

strategy

Criteria
1st place

(cost: +1)
2nd place

(cost: +2)
3rd place

(cost: +3)
4th place

(cost: +4)
5th place

(cost: +5)
6th place

(cost: +6)
Readability QVT-O TGG ATL Kermeta ETL QVT-R

Writability ETL QVT-R ATL TGG QVT-O Kermeta

Reliability QVT-O ETL TGG ATL Kermeta QVT-R

Maintainability ETL QVT-O Kermeta TGG ATL QVT-R

Learnability ATL, ETL QVT-O Kermeta QVT-R TGG -

Generality QVT-R TGG QVT-O Kermeta ATL ETL

Portability ATL, QVT-O ETL Kermeta QVT-R TGG -

Reusability TGG ETL QVT-O Kermeta QVT-R ATL

Availability of Tool ATL QVT-O Kermeta TGG ETL QVT-R

Standardization ATL, ETL QVT-O Kermeta TGG QVT-R -

In order to determine the total cost of each subject MTL with respect to a certain

type of cost, the obtained costs of Table 15 are used. The procedure is as follows.

At first, the influencing criteria on each type of cost are determined. Then, for each

determining criterion, the cost of each subject MTL is taken from Table 15 with

respect to that criterion. Next, the results are summarized in a table. Finally, the

total cost of each subject MTL with respect to a certain type of cost is achieved. In

the following, the results of computations for each certain type of cost are presented.

Cost of training: Cost of training is related to readability and learnability.

The upper part of Table 16 presents how this type of cost can be computed. The

readability and learnability cost of each language are computed based on the values

in Table 15 The total cost of training is achieved by adding the cost of mentioned



36 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

criteria for each language. Due to the results of Table 16 (upper part), QVT-O is the

language with lower cost of training and QVT-R has the high cost.

Table 16 The results of evluating subject MTLs on cost of training (upper)

and cost of writing a program (lower)

Cost of training ATL ETL Kermeta QVT-O QVT-R TGG

Readability cost +3 +5 +4 +1 +6 +2
Learnability cost +1 +1 +3 +2 +4 +5
Total cost +4 +6 +7 +3 +10 +7
Cost of writing programs ATL ETL Kermeta QVT-O QVT-R TGG

Readability cost +3 +5 +4 +1 +6 +2
Writability cost +3 +1 +6 +5 +2 +4
Reliability cost +4 +2 +5 +1 +6 +3
Reusability cost +6 +2 +4 +3 +5 +1
Availability of tool cost +1 +5 +3 +2 +6 +4
Total cost +17 +15 +22 +12 +25 +14

Cost of writing a program: The cost of writing a program is affected by

readability, writability, reliability, reusability, and availability of tools. The cost of

writing is computed in Table 16 (lower part). According to the results for the cost of

writing programs, QVT-O and subsequently TGG have low costs. ETL and

consequently ATL have medium costs. However, QVT-R and Kermeta have a very

high cost.

Cost of compiling and executing: This type of cost is influenced by

writability, reliability, and portability. Table 17 (upper part) measures the total cost

of compiling and executing. ETL is considered as an efficient language in compiling

and executing. After that, QVT-O and ATL go to the second and third place.

Finally, TGG and QVT-R are better than Kermeta.

Table 17 The results of evaluating subject programs on cost of compiling

(upper) and implementation (lower)

Cost of compiling and executing ATL ETL Kermeta QVT-O QVT-R TGG

Writability cost +3 +1 +6 +5 +2 +4
Reliability cost +4 +2 +5 +1 +6 +3
Portability +1 +2 +3 +1 +4 +5
Total cost +8 +5 +14 +7 +12 +12
Cost of implementation system ATL ETL Kermeta QVT-O QVT-R TGG

Readability cost +3 +5 +4 +1 +6 +2
Writability cost +3 +1 +6 +5 +2 +4
Reliability cost +4 +2 +5 +1 +6 +3
Availability of tool cost +1 +5 +3 +2 +6 +4
Standardization +1 +1 +3 +2 +5 +4
Total cost +12 +14 +21 + 11 +25 +17

Cost of implementation system: The computation of this type of cost is

demonstrated in Table 17 (lower part). The results show low costs for ATL and

QVT-O, medium costs for ETL and Kermeta, and high costs for TGG and QVT-R.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 37

Cost of poor reliability: The cost of poor reliability is computed based on

six criteria including readability, writability, reliability, availability of tools, and

standardization. QVT-O and ATL have better results. Kermeta and QVT-R have a

high cost. Table 18 (upper part) presents the obtained results.

Table 18 The results of evaluating subject MTLs on cost of poor reliability

(upper) and maintaining programs (lower)

Cost of poor reliability ATL ETL Kermeta QVT-O QVT-R TGG

Readability cost +3 +5 +4 +1 +6 +2
Writability cost +3 +1 +6 +5 +2 +4
Reliability cost +4 +2 +5 +1 +6 +3
Availability of tool cost +1 +5 +3 +2 +6 +4
Standardization +1 +1 +3 +2 +5 +4
Total cost +12 +14 +21 +11 +25 +17
Cost of maintaining programs ATL ETL Kermeta QVT-O QVT-R TGG

Readability cost +3 +5 +4 +1 +6 +2
Writability cost +3 +1 +6 +5 +2 +4
Reliability cost +4 +2 +5 +1 +6 +3
Maintainability cost +5 +1 +3 +2 +6 +4
Reusability cost +6 +2 +4 +3 +5 +1
Availability of tool cost +1 +5 +3 +2 +6 +4
Standardization +1 +1 +3 +2 +5 +4
Total cost +23 +17 +28 +16 +36 +22

Cost of maintaining programs: The cost of maintaining programs is related

to several features of a language including readability, writability, reliability,

maintainability, reusability, availability of tools, and standardization. The results

are summarized in Table 18 (lower part). Due to these results, QVT-O and

subsequently ETL have lowest costs in maintaining programs. After that, TGG and

then ATL are more preferable than Kermeta and QVT-R.

Figure 3. Comparison of the summarized results for different types of costs and for six

subject MTLs.



38 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

In order to gain further insight to the results, the total amount for each of six

types of costs and for each of six subject MTLs have been shown in Fig. 3. In this

figure, the horizontal axis depicts six types of costs and the vertical axis depicts the

amount of cost. Each line inside the figure belongs to an MTL. As can be seen,

QVT-R has the highest cost for all types of costs except for the cost of compiling and

executing. Moreover, QVT-O has the lowest cost in all aspects except for the cost of

compiling and executing. Additionally, ATL and ETL have the lowest average costs

with respect to different types of costs. Hence, from the cost point of view, ATL and

ETL can be the best choices.

4.13 Comprehensive view of the results

In order to gain a comprehensive insight of all the subject MTLs with respect to

all mentioned criteria except for cost, a radar diagram has been drawn which is shown

in Fig. 4. The diagram helps a user for quick decision making about an appropriate

language with respect to his/her requirements.

Figure 4. Comparison of six subject MTLs with respect to 10 major citeria in a radar

diagram.

Each line belonging to a single MTL consists of 10 line segments and has rotated

once inside the decagon. The line concerning each criterion starts from the center

and ends at an external edge of decagon. The start point shows minimum value and

the edge point shows the maximum value for each criterion. As an example, if a

user needs a language with high writability, reliability, and learnability, ETL can be

a good choice. This is because the line belonging to ETL is near or on the external

edges of decagon for the three mentioned criteria. Otherwise, if availability of tools

and standardization are more important for the user, the diagram suggests ATL. In

case the user needs a language that partly satisfies all of the criteria, QVT-O would

be a suitable choice due to larger area inside the decagon. As compared to QVT-O,

Kermeta has smaller area yielding an average place from the evaluation criteria point

of view.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 39

Based on common sense, the presented 11 criteria are not all isolated; some of

them actually overlap with others and some of them have conflict with others.

Conflicting criteria[32] is of paramount importance when evaluating transformation

languages. Each pair of conflicting criteria shows those criteria that cannot be

optimized at the same time. According to the application at hand, one should

establish an appropriate trade-off among each pair. In order to demonstrate the

relationships between each pair of the criteria, Table 19 is prepared to show a brief

picture of their correlation, whether they overlap or conflict each other. This table

comprises 10 criteria and the cost is not incorporated.

Table 19 The correlation between each pair of criteria; ‘↑’ strong overlap, ‘↑’
weak overlap, ‘↓’ strong conflict, ‘↓’ weak conflict

R
e
a
d
a
b
ility

W
r
ita

b
ility

R
e
lia

b
ility

M
a
in
ta

in
a
b
ility

L
e
a
r
n
a
b
ility

G
e
n
e
r
a
lity

P
o
r
ta

b
ility

R
e
u
sa

b
ility

A
v
a
ila

b
ility

o
f
T
o
o
ls

S
ta

n
d
a
r
d
iz
a
tio

n

Readability ↑ ↓↑ ↑ ↑ ↓ ↑ ↓
Writability ↑ ↑ ↑ ↓ ↑ ↑
Reliability ↑ ↑ ↓ ↑ ↑
Maintainability ↑ ↑
Learnability ↑ ↑
Generality ↑
Portability ↑
Reusability ↑
Availability of Tools ↑
Standardization ↑

The observations from the table are as follows:

Readability. With writability, it has conflicts with rule scheduling and some of

sub-criteria associated with syntax design; in other cases they are common. With

reliability, they strongly overlap because reliability directly relates to readability.

With maintainability, the same situation as reliability holds. With learnability, they

weakly conflict because the number of primitives and the number of keywords

improve readability and at the same time increase the size of the MTL. With

generality, they are weakly overlapped because tracing sub-criterion in readability

and traceability sub-criterion in generality are roughly sharing much commonality.

With reusability, they weakly conflict because operator overloading is preferred in

reusability while it degrades readability.

Writability. With reliability, they highly overlap due to direct relationship with

writability. With maintainability, they have strong overlap due to commonality in the

abstraction sub-criterion, which is of utmost importance. With learnability, they have

weak conflict because the number of primitives and the number of keywords improve

writability while at the same time increase the size of the MTL. With generality, they

are strongly overlapped due to the commonality with tracing and bidirectionality



40 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

sub-criteria. With reusability, they have strong overlap because they are sharing

abstraction, which is an important sub-criterion.

Reliability. With maintainability, they are strongly overlapped. The reason is

that they are both sharing readability, which is considered immensely important.

Moreover, maintainability of abstraction shares much commonality with writability,

the sub-criterion of reliability. With learnability, they have weak conflict due to the

dependence on readability and writability. With generality, they are weakly

overlapped. With reusability, they have weak overlap because they are indirectly

sharing abstraction.

Maintainability. With reusability, they are strongly overlapping due to much

commonality in abstraction which is of utmost importance for both criteria.

Learnability. With availability, they have strong overlapping because they are

sharing maturity which is considered important for both criteria.

4.14 Evaluation of the proposed methodology

In this section, we apply the methodology presented in Section 3.2 on six subject

MTLs evaluated in the course of the Section 4.2 to 4.12. The results of the mentioned

sections are used to derive the evaluation of the proposed methodology. Suppose that,

there exist three kinds of imaginary users (stakeholders) in a software development

team including programmer, manager, and analyst. Each of these users needs an MTL,

but the requirements and preferred characteristics of each user concerning desired

MTL differs. The users altogether nominate six MTLs for their tasks. However, they

should agree on a single language. The candidate languages are those that were used

as subject MTLs, i.e., ATL, ETL, Kermeta, TGG, QVT-O, and QVT-R. Using the

proposed methodology is to determine the language with highest score for each user.

Then, an MTL that has the highest score among majority of users is suggested as the

most appropriate one.

The imaginary users are requested to specify the characteristics of their preferred

MTL in terms of weighting the evaluation criteria and their sub-criteria. We offer five

degrees of importance for each criterion or sub-criterion that are inoperative, weak,

typical, high, and strong from the least important to the most important. These

levels of importance are then converted to numerical weights between 0 and 2 such

that 0 goes to inoperative, 0.5 to weak, 1 to typical, 1.5 to high and 2 goes to strong.

Besides, the qualitative values of evaluating each criterion are converted to numerical

values between 0 and 1 such that smaller numbers belong to less desirable values

and larger numbers belong to more desirable values. Moreover, the range of 0 to 1

is divided by the number of values of each criterion. For example, a three-valued

criterion is converted to 0, 0.5, and 1 accordingly. For criteria with high number of

values, we need discretization and labeling beforehand.

Table 20 shows the numerical values for readability criterion and its sub-criteria

and for six candidate MTLs. In order to save space, the values of other criteria are

not presented. In addition, Table 21 though Table 23 show the hypothetical numerical

weights concerning major criteria and their sub-criteria which are assigned by the

imaginary users.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 41

Table 20 The numerical values for the readability criterion and for six subject

MTLs

Readability ATL ETL Kermeta QVT-O QVT-R TGG

Simplicity 0.25 0.50 0.72 0.22 0.47 0.58

Orthogonality 0.50 0.00 0.50 0.50 0.50 0.50

Syntax design 0.46 0.36 0.48 0.67 0.04 0.00

Syntactic separation 0.50 0.50 0.00 0.00 0.50 1.00

Application condition 1.00 1.00 0.00 0.50 0.50 0.50

Rule scheduling 0.50 0.50 1.00 1.00 0.50 1.00

Domain body 0.67 0.67 0.75 0.75 0.67 0.75

Tracing 1.00 1.00 0.00 1.00 1.00 1.00

Table 21 The hypothetical numerical weights concerning readability and

writability, maintainability and reliability, learnability and portability, and

standardization and reusability assigned by three imaginary users according to

their requirements and preferences; for each criterion, Programmer (left),

Manager (middle), Analyst (right)

Readability 1.5 0.0 2.0 Writability 2.0 0.0 0.5

Simplicity 2.0 0.0 2.0 Simplicity 2.0 0.0 2.0

Orthogonality 1.5 0.0 1.5 Orthogonality 1.5 0.0 1.0

Syntax design 1.0 0.0 1.5 Syntax design 1.0 0.0 1.0

Syntactic separation 2.0 0.0 1.5 Syntactic separation 2.0 0.0 1.0

Application condition 1.0 0.0 1.5 Application condition 1.0 0.0 1.0

Rule scheduling 1.0 0.0 1.5 Rule scheduling 1.0 0.0 0.5

Domain body 1.0 0.0 1.5 Domain body 1.0 0.0 1.0

Tracing 1.0 0.0 2.0 Tracing 1.5 0.0 2.0

Abstraction 1.5 0.0 2.0

Expressiveness 2.0 0.0 2.0

Maintainability 0.0 1.0 2.0 Reliability 0.5 1.0 2.0

Readability 0.0 1.0 2.0 Readability 1.5 1.0 2.0

Abstraction 0.0 1.0 2.0 Writability 2.0 1.0 0.5

Size 0.0 1.0 2.0 Rule strategy 1.0 1.0 1.5

Complexity 0.0 1.0 2.0 Exception handling 2.0 1.0 2.0

Aliasing 1.0 1.0 2.0

Domain typing 2.0 1.0 2.0

Learnability 2.0 0.0 1.0 Portability 1.5 2.0 0.0

Learning curve 2.0 0.0 1.0 Hardware (32/64bit) 1.0 2.0 0.0

Language size 2.0 0.0 1.0 OS (Win/Linux) 1.0 2.0 0.0

Maturity 1.5 0.0 1.0 Version (H/J/I/K/L/M) 2.0 2.0 0.0

Standardization 0.0 2.0 1.0 Reusability 1.0 1.5 0.0

Timeliness 0.0 2.0 0.0 Abstraction 1.5 1.0 0.0

Conformance 0.0 2.0 1.0 Rule inheritance 1.0 1.0 0.0

Obsolescence 0.0 2.0 0.0 Higher-order rules 1.0 1.0 0.0

Composition 1.0 1.0 0.0

The results of scoring the six subject MTLs according to the specific requirements

of three imaginary users have been shown in Table 23 and visualized in Fig. 5. As



42 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

can be seen, ATL best matches to the requirements of programmer due to its highest

score. For manager, QVT-O achieves the highest score. For analyst, ATL is the best

fit MTL. It turns out that ATL is an MTL which matches to the requirements and

preferences of majority users. Therefore, it is suggested as an appropriate MTL to

these three users.

Table 22 The hypothetical numerical weights concerning generality (left part)

and availability of tools (right part) assigned by three imaginary users; In each

part, Programmer (left), Manager (middle), Analyst (right)

Generality 0.5 1.5 0.0 Availability of tools 2.0 1.0 1.0

Source cardinality 1.0 1.0 0.0 Translator 2.0 1.0 1.0

Target cardinality 1.0 1.0 0.0 Editor 2.0 1.0 1.0

Technical space (EMF/XMI/XML) 1.5 1.5 0.0 Debugger 1.0 1.0 2.0

Bidirectionality 1.0 1.0 0.0 Easy installation 2.0 1.0 1.0

Traceability 1.0 1.0 0.0 History of use 2.0 1.0 0.0

Change propagation 1.5 1.0 0.0 Support for case studies 2.0 1.0 0.0

CRUD transformations 0.0 1.0 0.0 Technical support 2.0 1.0 1.0

Endogenous transformation 0.0 1.0 0.0

Exogenous transformation 1.0 1.0 0.0

Model merging 0.0 1.0 0.0

Model comparing 0.0 1.0 0.0

Model validating 1.0 1.0 0.0

Integrated to code generator 1.5 1.0 0.0

Table 23 The overall weights of the six subject MTLs for three imaginary

supposed users

User ATL ETL Kermeta QVT-O QVT-R TGG

Programmer 0.69 0.66 0.58 0.64 0.47 0.58

Manager 0.54 0.47 0.49 0.57 0.41 0.50

Analyst 0.42 0.41 0.38 0.39 0.31 0.38

Figure 5. Comparison of six subject MTLs according to the specific requirements of three

imaginary supposed users.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 43

The reason why ATL achieved the highest score for programmer and analyst and

QVT-O achieved the highest score for manager can be attributed to the considered

weights or requirements of these users. As can be seen in Table 21, for manager,

readability and writability are assigned the zero weight that in both cases ATL has

higher scores as compared to QVT-O, while for programmer and analyst these weights

are assigned a weight of two. Again, for learnability, the scores of QVT-O are less

than ATL. However, due to the zero weight of learnability for manager, the difference

of ATL and QVT-O in terms of learnability does not matter. The importance of

generality criterion for manager coincides with the strength of QVT-O in this criterion

which leads to increase the overall score of this language for manager. Note that for

generality, QVT-R is even stronger than QVT-O. However, its weakness in terms of

other criteria makes QVT-O superior to QVT-R for manager. For other criteria, the

difference does not matter significantly.

Typically, after evaluation of MTLs using the mentioned criteria, it is expected

that one can choose, among candidates, an appropriate MTL for the task at hand.

However, this is not always trivial due to high number of criteria and features and

diversity among them. For example, TGG and QVT-R have usually weak

functionality in terms of the most criteria except for some limited ones. Therefore,

the result of evaluations on these two languages can be guessed beforehand.

However, this is not the case for stronger languages such as ATL, ETL, and QVT-O.

This is why we need heuristics to assist in the process of evaluation. There might be

cases that the results of evaluations using the MSR and interactive quantitative

method (even for equal weights) do not equate. However, the benefit of the former

is low complexity and faster evaluation, while the latter generates more accurate

results. The accuracy of the results is advantageous especially in critical decision

making situations where for example a manager must decide on the most

appropriate language for the development team or a programmer that wants to start

learning a new MTL.

It should come as little surprise that QVT-R gained the lowest score in our

experiment for all users. In fact, this was expected due in large to lack of

appropriate tools that can support all of the language’s standards. Another reason

lies in ambiguities in the language’s standards.

In declarative languages such as QVT-R and TGG, the exact steps of

transformations are not expressed and this makes ambiguities in the language

especially for programmers that used to work with imperative languages such as

Java. Interactive quantitative method enables a user to conduct some sort of what-if

or goal seeking scenarios and study the effect of underlying parameters. The

definition of weights in Eq. (1) and Eq. (2) for each of criteria and corresponding

sub-criteria makes the interactive method of evaluation and decision making highly

flexible.

As such, automating the interactive method could bring us a decision-support

system in the context of MTL evaluation and selection. Even, one can add a machine

learning method to the whole system for reasoning and forecasting on MTLS.

Overall, the experimental results of Section 4 suggest that accounting for

insights achieved from evaluations using the introduced criteria, along with

interactive quantitative method, has much potential when used as part of decision



44 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

making process for MTL selection. The results also illustrate that the choice of the

suitable weights for criteria is strongly dependent upon the particular application of

interest and can make many different results. For example, from an instructor’s

point of view who wants to teach an MTL to students, simplicity and learnability

play essential roles. Traceability is also important for the teacher to enable him or

her to make trace models and show what is transformed to what. Students, on the

other hand, prefer debugging facilities of the language and tools. As another

example, for a user who wants to implement a transformation in which model

synchronization is required, the bidirectionality, incrementality, change propagation,

and possibly model validation should be assigned a weight of 2 (strong level).

5 Discussion

Most of the model transformation and PL evaluation criteria, such as

readability, writability, orthogonality, support for abstraction, type checking,

portability, and reliability neither can be defined exactly, nor can be measured

precisely. Nevertheless, they provide useful insights to the design and evaluation of

these languages. This is why we had to apply a comparison method such as MSR

strategy that enables us in part to analyze the relative superiority of a language to

the others. Put simply: Evaluation of MTLs has been challenging, mainly because

of: 1) difficulty in the measurement of the most criteria; 2) inaccurate results due to

subjective measurements; 3) difficulty in combining the qualitative and quantitative

measurements; 4) mutual effects and complex interrelationships among the existing

criteria; 5) difference in the requirements of the users of a language; 6) difference in

relative significance of the criteria in different situations.

When using the aforementioned criteria for evaluating PLs or MTLs, one should

consider the inherent significance concerning each criterion. This is mainly because

the significance (weight) of evaluation criteria is not the same; some criteria have

high impact while the others may have low impact. For example, among readability,

writability, and their sub-features, readability should be considered more important

than writability. This is essentially due to the importance of the maintenance stage

in the software development lifecycle. Since model transformations are also software

developed using MTLs, the readability should be highly regarded when evaluating

transformation languages. A transformation program is usually written once and

might be read many times. Moreover, it may be partly modified to fix a problem

or extend its functionality by a different developer. This needs reading the current

program and understanding it. In addition to readability and writability, this point

also holds for other paired criteria.

The importance of the evaluation criteria used for PLs and MTLs also varies

according to the user of the language. For example, on the one hand, language

implementers are mostly concerned with the details and issues of implementing the

structures and features of a language. On the other hand, language users

(programmers and developers) often think of writability and readability of

languages. Language designers, as another user of a language, emphasize on the

elegancy of the languages such that it gains wide-spread usage. These requirements

and viewpoints often conflict with each other[32].

There exist some features such as testing and debugging facilities which are



Leila Samimi-Dehkordi, et al.: Applying programming language ... 45

provided by transformation language tools and IDEs. However, they influence the

maintainability of the programs written with that language. In other words, testing

and debugging are features that belong to the tools of a language, but they improve

maintainability of the language itself.

In addition to the interactive approach mentioned in this paper, there can be an

automatic approach in which we can specify a fixed and pre-defined set of stakeholders

and their required criteria. Although this approach may provide the possibility of

further investigation in advance, but in general, it reduces the flexibility of the overall

approach.

Ease of verification of transformation programs written by an MTL is a desired

attribute for a good language which leads in large to improve the reliability of

transformation programs[42,61]. Ease of verification is a broad criterion which

necessitates a separate investigation and is out of the scope of this paper.

Statements ratio is a measure that can demonstrate the expressiveness of a language

as compared to others[62]. Each line of code in high-level languages says more than

that of low-level languages. This helps increase writability and productivity of the

language. The bottom line is that establishment of the methods that are capable of

precise measurement of criteria still remains an interesting research problem.

6 Related Work

Classification and Taxonomies of Transformation Approaches.

Czarnecki and Helsen[33] proposed a framework for classification of model

transformation approaches which is based on a feature model. Mens et al.[15]

presented a multidimensional taxonomy of model transformations. It aims at

helping a developer choose a specific transformation language, tool, method or

technology according to his/her requirements based on the answers to some

questions containing a set of concrete criteria. The results of the research by

Taentzer et al.[31] generated a taxonomy and comparison of four MTLs that rely on

graph techniques of transformations. Mohagheghi and Dehlen[63] provided a 7-step

process to define an initial quality framework, adapted to model-driven engineering

and applied to quality of model transformations. Mens et al.[64] suggested a

taxonomy for graph transformations by formulating quality requirements. Various

approaches to model transformation and desirable characteristics of an MTL have

been presented by Sendall and Kozaczynski[65]. These studies present taxonomies,

classifications, or quality frameworks for MTLs, often without case studies.

Moreover, the MTLs used in their studies are either very limited or are not

representative of large number of existing MTLs.

Evaluating Transformation Approaches. Huber[45] evaluated four MTLs,

ATL, Kermeta, SmartQVT, and ModelMorf. The evaluation was accomplished via a

taxonomy presented by Czarnecki et al.[33]. Lano et al.[5] provided a unified

semantic treatment of model transformations, independent of any specific

transformation language. The authors evaluated their framework by comparing the

specifications of QVT-R, ATL, VIATRA, UML-RSDS, and Kermeta on three case

studies including quality improvement, UML to relational database mapping, and

tree to graph transformation. Some research has investigated the key factors that

affect the quality of model transformations[7,66]. The purpose of these studies has



46 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

been to measure the quality of model transformation. Amstel et al.[7] defined a set

of six quality attributes along with 27 metrics collected from six heterogeneous

model transformations automatically. Vignaga[6] presented a set of 81 metrics to

measure the transformations of ATL and assess their quality. The high number of

metrics is due to the size and complexity of the ATL MM. The developed metrics by

Vignaga do not apply to all transformation approaches and is almost dedicated to

ATL. Measurements are objective and interpretations are subjective. By contrast,

our method is general and can be applied on any sort of MTL including ATL. It has

potential to compare different MTLs in a single category. PL criteria facilitate

understanding the capabilities of an MTL even for novices in MDE context.

Rose et al.[67] conducted a comparison study on four model migration tools

including AML23, COPE, Ecore2Ecore, and Epsilon Flock. The authors utilized

nine comparison criteria in a single dimension research. The chosen tools are specific

for migration and the comparison criteria do not rely on a standard basis. A

comparison of Epsilon Flock to other model migration languages has been

performed by Rose et al.[68] in which they described Epsilon Flock, an M2M

transformation language, suitable for model migration tasks. They used

Ecore2Ecore, ATL, and COPE for their comparison with Epsilon Flock. Grønmo et

al.[27] have compared three MTLs. The authors performed their comparison using a

refactoring example which was eliminating unstructured cycles from UML activity

diagrams. The aim of the research by Kapová et al.[69] has been to investigate the

maintainability of transformations, specially written in QVT-R. They suggested 24

metrics for evaluations of model transformation generated in QVT-R and applied

them to three common, but different transformations. Amstel[3,4] proposed ways of

analyzing model transformations which are considered as objective measurements,

such as dependency analysis and MM coverage. They have used three MTLs, ATL,

QVT-R, and QVT-O on two common examples.

Kusel et al. presented[35] a survey and comparison of reuse mechanisms for MTLs

using a comparative framework. This framework consists of major dimensions of reuse

mechanisms and main stages in the process of reuse (including abstraction, selection,

specialization, and integration). This study focuses on different sides of a single aspect

of MTLs. Although reuse is an important mechanism to software development, it is

only part of the story. A number of useful criteria should be incorporated into the

evaluation process. Our method is designed to accomplish this goal by employing more

familiar criteria. In case where someone needs to evaluate MTLs focusing on a single

criterion and its sub-criteria, he or she can favour our decision-making methodology

in combination with his or her criteria.

Schubert evaluated four different MTLs[46] including ATL, ETL,

QVT-operational mapping language (QVT OML), and Xtend based upon the

properties described in ISO 9126 standard. Kolahdouz-Rahimi et al.[2] established a

systematic evaluation framework for MTL comparison, based upon the ISO/IEC

9126-1 quality characteristics for software systems. In their case studies, five

transformation approaches QVT-R, ATL, Kermeta, UML-RSDS, and GrGen.NET

were evaluated on a complex model refactoring case study. Contrary to this paper,

the study of Kolahdouz-Rahimi et al. did not investigate any graph-based MTL.

23wiki.eclipse.org/AML



Leila Samimi-Dehkordi, et al.: Applying programming language ... 47

Additionally, it is only a comparison framework. After evaluating of MTLs by any

method, the developer is responsible to decide on choosing an appropriate MTL

based on the evaluation results. However, our method acts as a (semi) automatic

decision-support system to bridge this important gap in the context of MTL

evaluations.

Further investigating all the mentioned studies shows that few of them do not

have any case studies and most of them performed one or two case studies. In addition,

about half of studies used objective measurements and the others performed either

subjective measurements exclusively or a combination of subjective and objective

measurements. The number of evaluated MTLs in these studies varies between one

to four that make results less generalizable. Some of evaluation studies are limited in

terms of generality; they are MTL-specific[6], feature-specific[69], or both.

7 Conclusion

High number of MTLs with different capabilities and characteristics motivated

the research community to find effective methods of evaluating and comparing MTLs

to assist designers in making an appropriate choice for their task. The current methods

relied on some criteria usually with subjective measurements. This paper proposed to

utilize the PL criteria for evaluation of transformation languages. Deep understanding

of various aspects of PLs resulted from applying well-defined criteria in comprehensive

investigations motivated us to adapt them for evaluation of MTLs. This paper realized

this intuition in detail and presented a family of criteria that facilitate the precise

evaluation of transformation languages. We selected six MTLs as the representatives

of all existing MTLs to be evaluated using the mentioned criteria. The results show

the potential benefit of applying PL criteria to the assessment of MTLs. The PL

criteria are strongly familiar for most of the programmers with various expertise

and experiences. This deep understanding of criteria and prominent background of

them leads to more precise measurements and eliminates the errors resulted from

subjective evaluations. In addition, the criteria act as a decision-support framework

for the designers during the development of software systems.

References

[1] Brambilla M, Cabot J, Wimmer M. Model-driven software engineering in practice. Synthesis

Lectures on Software Engineering, 2012, 1: 1–182.

[2] Kolahdouz-Rahimi S, Lano K, Pillay S, Troya J, Van Gorp P. Evaluation of model transformation

approaches for model refactoring. Science of Computer Programming, 2014, 85: 5–40.

[3] Van Amstel MF, Van Den Brand MGJ. Model transformation analysis: Staying ahead of the

maintenance nightmare. Theory and Practice of Model Transformations, Springer Berlin

Heidelberg, 2011: 108–122.

[4] Van Amstel M, Bosems S, Kurtev I, Pires LF. Performance in model transformations:

Experiments with ATL and QVT. Theory and Practice of Model Transformations, Springer

Berlin Heidelberg, 2011: 198–212.

[5] Lano K, Kolahdouz-Rahimi S, Poernomo I. Comparative evaluation of model transformation

specification approaches. International Journal of Software and Informatics, 2012, 6 (2): 233–

269.

[6] Vignaga A. Metrics for measuring ATL model transformations [Technical Report]. MaTE,

Department of Computer Science, Universidad de Chile. 2009.

[7] Van Amstel MF, Lange CFJ, van den Brand MGJ. Using metrics for assessing the quality of



48 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

ASF+SDF model transformations. Theory and Practice of Model Transformations, Springer

Berlin Heidelberg, 2009: 239–248.

[8] Wimmer M, Kappel G, Kusel A, Retschitzegger W, Schönböck J, Schwinger W, Kolovos DS.

Surveying rule inheritance in model-to-model transformation languages. Journal of Object

Technology, 2012, 11(2): 1–46.

[9] Samimi-Dehkordi L, Khalilian A, Zamani, B. Programming language criteria for model

transformation evaluation. 2014 4th International eConference on Computer and Knowledge

Engineering (ICCKE). IEEE. 2014. 370–375.

[10] Jouault F, Kurtev I. Transforming models with ATL. Satellite Events at the MoDELS 2005

Conference. Springer Berlin Heidelberg. 2006. 128–138.

[11] Kolovos DS, Paige RF, AC Polack F. Eclipse development tools for epsilon. Eclipse Summit

Europe, Eclipse Modeling Symposium. 2006, 20062. 200.

[12] Drey Z, Faucher C, Fleurey F, Mahé V, Vojtisek D. Kermeta language reference manual.

University of Rennes, Triskell Team. 2009.

[13] OMG QVT. Meta Object Facility (MOF) 2.0 Query/View/Transformation 1.2 Beta

Specification, 2015.

[14] Schürr A, Klar F. 15 years of triple graph grammars. Graph Transformations, Springer Berlin

Heidelberg, 2008: 411–425.

[15] Mens T, Van Gorp P. A taxonomy of model transformation. Electronic Notes in Theoretical

Computer Science, 2006, 152: 125–142.

[16] Biehl M. Literature study on model transformations [Technical Report]. Royal Institute of

Technology. ISRN/KTH/MMK. 2010.

[17] Kolahdouz-Rahimi S. A comparative study of model transformation approaches through a

systematic procedural framework and goal question metrics paradigm [PhD. Thesis]. King’s

College London (University of London), 2013.

[18] Epsilon Transformation Language. Copyright ©2014 The Eclipse Foundation.

http://www.eclipse.org/epsilon/doc/etl/. 2014.

[19] Jouault F, Allilaire F, Bézivin J, Kurtev I. ATL: A model transformation tool. Science of

Computer Programming, 2008, 72(1): 31–39.

[20] Kolovos DS, Paige RF, AC Polack F. The Epsilon transformation language. Theory and Practice

of Model Transformations, Springer Berlin Heidelberg, 2008: 46–60.

[21] Jézéquel JM, Barais O, Fleurey F. Model driven language engineering with kermeta. Generative

and Transformational Techniques in Software Engineering III, Springer Berlin Heidelberg, 2011:

201–221.

[22] SmartQVT Development Team, SmartQVT - a QVT implementation. http://smartqvt.

elibel.tm.fr/. 2008.

[23] Gronback RC. Eclipse modeling project: A domain-specific language (DSL) toolkit. Pearson

Education, 2009.

[24] Kiegeland J, Eichler H. Enabling comprehensive tool support for QVT. Eclipse Summit Europe,

2007.

[25] Stevens, P. A simple game-theoretic approach to checkonly QVT relations. Software & Systems

Modeling, 2013, 12(1): 175–199.

[26] Willink E, Hoyos H, Kolovos D. Yet another three QVT languages. Theory and Practice of

Model Transformations, Springer Berlin Heidelberg, 2013: 58–59.

[27] Grønmo R, Møller-Pedersen B, Olsen GK. Comparison of three model transformation languages.

Model Driven Architecture-Foundations and Applications, Springer Berlin Heidelberg: 2009, 2–

17.

[28] Hildebrandt S, Lambers L, Giese H, Rieke J, Greenyer J, Schäfer W, Lauder M, Anjorin A,

Schürr A. A survey of triple graph grammar tools. Electronic Communications of the EASST,

2013, 57.

[29] Anjorin A, Lauder M, Patzina S, Schürr A. eMoflon: Leveraging EMF and professional CASE

tools. Informatik, 2011: 281.

[30] Leblebici E, Anjorin A, Schürr A. Developing eMoflon with eMoflon. Theory and Practice of

Model Transformations, Springer International Publishing, 2014: 138–145.



Leila Samimi-Dehkordi, et al.: Applying programming language ... 49

[31] Taentzer G, Ehrig K, Guerra E, De Lara J, Lengyel L, Levendovszky T, Prange U, Varro D,

Varro-Gyapay S. Model transformation by graph transformation: A comparative study. Proc.

Workshop Model Transformation in Practice. Montego Bay, Jamaica. 2005.

[32] Sebesta RW. Concepts of Programming Languages. 10th Ed. Pearson, 2012.

[33] Czarnecki K, Helsen S. Feature-based survey of model transformation approaches. IBM Systems

Journal, 2006, 45(3): 621–645.

[34] Watt DA. Programming language design concepts. John Wiley & Sons, 2004.

[35] Kusel A, Schönböck J, Wimmer M, Kappel G, Retschitzegger W, Schwinger W. Reuse in model-

to-model transformation languages: Are we there yet? Software & Systems Modeling, 2013,

14(2): 537–572.

[36] Wimmer M, Kappel G, Kusel A, Retschitzegger W, Schoenboeck J, Schwinger W. Surviving

the heterogeneity jungle with composite mapping operators. Theory and Practice of Model

Transformations, Springer Berlin Heidelberg, 2010: 260–275.

[37] Scott ML. Programming language pragmatics. Morgan Kaufmann, 2009.

[38] Al-Sibahi AS. On the computational expressiveness of model transformation languages. ITU

Technical Report Series, 2015.

[39] Pressman RS. Software Engineering: A Practitioner’s Approach, 7th Ed. McGraw-Hill

Education, 2009.

[40] Lehrig S. Assessing the quality of model-to-model transformations based on scenarios [MSc

Thesis]. University of Paderborn, Zukunftsmeile 1, 2012.

[41] Rensink A. The edge of graph transformation—graphs for behavioural specification. Graph

transformations and model-driven engineering, Springer Berlin Heidelberg, 2010: 6–32.

[42] Pratt TW, Zelkowitz MV. Programming Languages: Design and Implementation, 4th Ed.

Pearson, 2000.

[43] Farooq MS, Afzal Khan S, Ahmad F, Islam S, Abid A. An evaluation framework and comparative

analysis of the widely used first programming languages. PloS One, 2014, 9(2): 1–25.

[44] Greenyer J, Kindler E. Reconciling tggs with qvt. Model Driven Engineering Languages and

Systems, Springer Berlin Heidelberg, 2007: 16–30.

[45] Huber P. The model transformation language jungle: an evaluation and extension of existing

approaches [Master’s Thesis]. Business Informatics Group, TU Wien, 2008.

[46] Schubert LA. An Evaluation of Model Transformation Languages for UML Quality Engineering

[Master’s Thesis]. Georg-August-Universität Göttingen, 2010.

[47] Cuadrado JS, Guerra E, De Lara J. Uncovering errors in ATL model transformations using

static analysis and constraint solving. 2014 IEEE 25th International Symposium on Software

Reliability Engineering (ISSRE). IEEE. 2014. 34–44.

[48] Rentschler A. Model transformation languages with modular information hiding. KIT Scientific

Publishing, 2015, 17.

[49] ATL Transformations. https://www.eclipse.org/atl/atlTransformations/#Class2Relation

al. 2015.

[50] AtlanMod. http://www.emn.fr/z-info/atlanmod/index.php/Main Page/. 2015.

[51] EMorF, Example-Zoo. http://emorf.org/zoo/zoo.html. 2012.

[52] Bézivin J, Dupé G, Jouault F, Pitette G, Rougui JE. First experiments with the ATL model

transformation language: Transforming XSLT into Xquery. 2nd OOPSLA Workshop on

Generative Techniques in the Context of Model Driven Architecture. 2003. 37.

[53] Tisi M, Mart́ınez S, Jouault F, Cabot J. Lazy execution of model-to-model transformations.

Model Driven Engineering Languages and Systems, Springer Berlin Heidelberg, 2011: 32–46.

[54] Del Fabro MD, Valduriez P. Semi-automatic model integration using matching transformations

and weaving models. Proc. of the 2007 ACM Symposium on Applied Computing. ACM. 2007.

963–970.

[55] Gerpheide CM, Schiffelers RRH, Serebrenik A. A bottom-up quality model for QVTo. 2014

9th International Conference on the Quality of Information and Communications Technology

(QUATIC). IEEE. 2014. 85–94.

[56] Boronat A. Exogenous model merging by means of model management operators. Electronic

Communications of the EASST, 2007, 3.



50 International Journal of Software and Informatics, Volume 10, Issue 4 (2016)

[57] Königs A. Model transformation with triple graph grammars. Model Transformations in

Practice Satellite Workshop of MODELS, 2005, 166.

[58] Ermel C, Hermann F, Gall J, Binanzer D. Visual modeling and analysis of EMF model

transformations based on triple graph grammars. Electronic Communications of the EASST,

2012: 1–12.

[59] Schürr A. Specification of graph translators with triple graph grammars. Graph-Theoretic

Concepts in Computer Science, Springer Berlin Heidelberg, 1995: 151–163.

[60] Stevens P. Bidirectional model transformations in QVT: semantic issues and open questions.

Software & Systems Modeling, 2010, 9(1): 7–20.

[61] Calegari D, Szasz N. Verification of model transformations: A survey of the state-of-the-art.

Electronic Notes in Theoretical Computer Science, 2013, 292: 5–25.

[62] McConnell S. Code complete. Pearson Education, 2004.

[63] Mohagheghi P, Dehlen V. Developing a quality framework for model-driven engineering. Models

in Software Engineering, Springer Berlin Heidelberg, 2008: 275–286.

[64] Mens T, Van Gorp P, Varró D, Karsai G. Applying a model transformation taxonomy to graph

transformation technology. Electronic Notes in Theoretical Computer Science, 2006, 152: 143–

159.

[65] Sendall S, Kozaczynski W. Model transformation: The heart and soul of model-driven software

development. IEEE Softw., 2003, 20(5): 42–45.

[66] Van Amstel MF, Lange CFJ, van den Brand MGJ. Metrics for analyzing the quality of model

transformations. 12th ECOOP Workshop on Quantitative Approaches on Object Oriented

Software Engineering. 2008.

[67] Rose LM, Herrmannsdoerfer M, Williams JR, Kolovos S, Garcés K, Paige RF, Polack FAC.

A comparison of model migration tools. Model Driven Engineering Languages and Systems,

Springer Berlin Heidelberg, 2010: 61–75.

[68] Rose LM, Kolovos DS, Paige RF, Polack FAC. Model migration with Epsilon flock. Theory and

Practice of Model Transformations, Springer Berlin Heidelberg, 2010: 184–198.

[69] Kapová L, Goldschmidt T, Becker S, Henss J. Evaluating maintainability with code metrics

for model-to-model transformations. Research into Practice–Reality and Gaps, Springer Berlin

Heidelberg, 2010: 151–166.

[70] Klassen L, Wagner R. EMorF-A tool for model transformations. Electronic Communications of

the EASST, 2012, 54.

[71] da Silva AR. Model-driven engineering: A survey supported by the unified conceptual model.

Computer Languages, Systems & Structures, 2015, 43: 139–155.

[72] Cadavid JJ, Combemale B, Baudry B. An analysis of metamodeling practices for MOF and

OCL. Computer Languages, Systems & Structures, 2015, 41: 42–65.

[73] ATL Transformations. http://www.eclipse.org/atl/atlTransformations/. 2015.


